Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review

[1]  Lingling Hu,et al.  Special characteristics of tetrachiral honeycombs under large deformation , 2019, International Journal of Solids and Structures.

[2]  D. Xiao,et al.  Impact energy absorption performances of ordinary and hierarchical chiral structures , 2019, Thin-Walled Structures.

[3]  Lingling Hu,et al.  A novel metamaterial with tension-torsion coupling effect , 2019, Materials & Design.

[4]  Jun Liang,et al.  Effects of Disordered Circular Nodes Dispersion and Missing Ligaments on the Mechanical Properties of Chiral Structures , 2019, physica status solidi (b).

[5]  Zhang Zhang,et al.  Mechanical property of re-entrant anti-trichiral honeycombs under large deformation , 2019, Composites Part B: Engineering.

[6]  Dexing Qi,et al.  Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure , 2019, Extreme Mechanics Letters.

[7]  A. F. Arrieta,et al.  Mechanics of curved-ligament hexachiral metastructures under planar deformations , 2019, Journal of the Mechanics and Physics of Solids.

[8]  Joseph N. Grima,et al.  Impact resistance of composite magnetic metamaterials , 2019, Scientific Reports.

[9]  R. Ciobanu,et al.  High frequency electromagnetic energy phenomena in chiral dielectric structures with distributed and localized conductive insertions , 2019, Composites Part B: Engineering.

[10]  M. Wegener,et al.  New Twists of 3D Chiral Metamaterials , 2019, Advanced materials.

[11]  Jianxun Zhang,et al.  Drastic tailorable thermal expansion chiral planar and cylindrical shell structures explored with finite element simulation , 2019, Composite Structures.

[12]  F. Barthelat,et al.  Toughness by segmentation: Fabrication, testing and micromechanics of architectured ceramic panels for impact applications , 2019, International Journal of Solids and Structures.

[13]  Giorgio Gnecco,et al.  Optimal Design of the Band Structure for Beam Lattice Metamaterials , 2019, Front. Mater..

[14]  D. Fang,et al.  Twistable Origami and Kirigami: from Structure-Guided Smartness to Mechanical Energy Storage. , 2019, ACS applied materials & interfaces.

[15]  N. Fang,et al.  Mechanical Metamaterials and Their Engineering Applications , 2019, Advanced Engineering Materials.

[16]  Joseph N. Grima,et al.  A Novel Three‐Dimensional Anti‐Tetrachiral Honeycomb , 2018, physica status solidi (b).

[17]  Lifeng Wang,et al.  Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact , 2018, Materials & Design.

[18]  Enrique Cuan-Urquizo,et al.  Curved-Layered Additive Manufacturing of non-planar, parametric lattice structures , 2018, Materials & Design.

[19]  Zheng-Dong Ma,et al.  Elastic analysis of auxetic cellular structure consisting of re-entrant hexagonal cells using a strain-based expansion homogenization method , 2018, Materials & Design.

[20]  Jerry Y. H. Fuh,et al.  On two-step design of microstructure with desired Poisson's ratio for AM , 2018, Materials & Design.

[21]  D. Fang,et al.  A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior , 2018, Journal of the Mechanics and Physics of Solids.

[22]  Wenwang Wu,et al.  Mechanical Design of Antichiral-Reentrant Hybrid Intravascular Stent , 2018, International Journal of Applied Mechanics.

[23]  Yuanping Song,et al.  Compliant rolling-contact architected materials for shape reconfigurability , 2018, Nature Communications.

[24]  F. D. Reis,et al.  Computing the effective bulk and normal to shear properties of common two-dimensional architectured materials , 2018, Computational Materials Science.

[25]  Daining Fang,et al.  A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio , 2018, International Journal of Solids and Structures.

[26]  C. Daraio,et al.  Highly porous microlattices as ultrathin and efficient impact absorbers , 2018, International Journal of Impact Engineering.

[27]  Jiafang Li,et al.  Focused-ion-beam-based nano-kirigami: from art to photonics , 2018, Nanophotonics.

[28]  Joseph N. Grima,et al.  An analytical and finite element study on the mechanical properties of irregular hexachiral honeycombs , 2018, Smart Materials and Structures.

[29]  Yonggang Huang,et al.  Mechanically active materials in three-dimensional mesostructures , 2018, Science Advances.

[30]  Olivier Baverel,et al.  Form Finding of Nexorades Using the Translations Method , 2018 .

[31]  Francois Barthelat,et al.  Simultaneous improvements of strength and toughness in topologically interlocked ceramics , 2018, Proceedings of the National Academy of Sciences.

[32]  Zhan Kang,et al.  Bi-material microstructural design of chiral auxetic metamaterials using topology optimization , 2018, Composite Structures.

[33]  J. Rizzuto Experimental investigation of reciprocally supported element (RSE) lattice honeycomb domes structural behaviour , 2018, Engineering Structures.

[34]  Zhiguang Liu,et al.  Nano-kirigami with giant optical chirality , 2018, Science Advances.

[35]  R. Lakes,et al.  The two-dimensional elasticity of a chiral hinge lattice metamaterial , 2018, International Journal of Solids and Structures.

[36]  Shijun Guo,et al.  A review of modelling and analysis of morphing wings , 2018, Progress in Aerospace Sciences.

[37]  Fu Minghui,et al.  A novel category of 3D chiral material with negative Poisson's ratio , 2018 .

[38]  Ruben Gatt,et al.  Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson's ratio , 2018 .

[39]  Li Yang,et al.  Drop-weight impact characteristics of additively manufactured sandwich structures with different cellular designs , 2018 .

[40]  Julián A. Norato,et al.  3D cellular metamaterials with planar anti-chiral topology , 2018 .

[41]  Lingling Hu,et al.  Mechanical behavior of anti-trichiral honeycombs under lateral crushing , 2018 .

[42]  Conner K. Dunn,et al.  Thermomechanically Triggered Two‐Stage Pattern Switching of 2D Lattices for Adaptive Structures , 2018 .

[43]  D. Fang,et al.  Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils , 2018 .

[44]  G. Qian,et al.  Mechanical Properties of 3D Isotropic Anti‐Tetrachiral Metastructure , 2018 .

[45]  Yanyu Chen,et al.  Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties , 2018 .

[46]  Paweł Baranowski,et al.  Modelling, and characterization of 3D printed cellular structures , 2018 .

[47]  Yaning Li,et al.  3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores , 2018, Scientific Reports.

[48]  Guian Qian,et al.  Mechanical properties of anti-tetrachiral auxetic stents , 2018 .

[49]  Yaning Li,et al.  Novel 3D‐Printed Hybrid Auxetic Mechanical Metamaterial with Chirality‐Induced Sequential Cell Opening Mechanisms , 2018 .

[50]  Jung Woo Lee,et al.  Morphable 3D Mesostructures and Microelectronic Devices by Multistable Buckling Mechanics , 2018, Nature Materials.

[51]  Yi Min Xie,et al.  Auxetic metamaterials and structures: a review , 2018 .

[52]  Zhengyi Jiang,et al.  Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review , 2017 .

[53]  Huajian Gao,et al.  Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties , 2017 .

[54]  Martin Wegener,et al.  Three-dimensional mechanical metamaterials with a twist , 2017, Science.

[55]  Tae Gwang Yun,et al.  3D printed stretching-dominated micro-trusses , 2017 .

[56]  Amir A. Zadpoor,et al.  From flat sheets to curved geometries: Origami and kirigami approaches , 2017 .

[57]  D. Fang,et al.  Mechanical properties of hierarchical anti-tetrachiral metastructures , 2017 .

[58]  T. Stręk,et al.  Minimization of Poisson’s ratio in anti-tetra-chiral two-phase structure , 2017 .

[59]  Minghui Fu,et al.  A novel chiral three-dimensional material with negative Poisson’s ratio and the equivalent elastic parameters , 2017 .

[60]  ChenTian,et al.  Large Shape Transforming 4D Auxetic Structures , 2017 .

[61]  D. Fang,et al.  In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures , 2017 .

[62]  Ergun Akleman,et al.  Interlocked archimedean spirals for conversion of planar rigid panels into locally flexible panels with stiffness control , 2017, Comput. Graph..

[63]  T. Vos,et al.  Global, regional, and national incidence and prevalence, and years lived with disability for 328 diseases and injuries in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 , 2017 .

[64]  Roderic S. Lakes,et al.  Negative-Poisson's-Ratio Materials: Auxetic Solids , 2017 .

[65]  A. Bacigalupo,et al.  Multi-parametric sensitivity analysis of the band structure for tetrachiral inertial metamaterials , 2017 .

[66]  J. Ganghoffer,et al.  Computation of the homogenized nonlinear elastic response of 2D and 3D auxetic structures based on micropolar continuum models , 2017 .

[67]  Thomas Kohlhammer,et al.  Design and structural analysis of complex timber structures with glued T-joint connections for robotic assembly , 2017 .

[68]  Ruben Gatt,et al.  On the dynamics and control of mechanical properties of hierarchical rotating rigid unit auxetics , 2017, Scientific Reports.

[69]  D. Gu,et al.  Structural optimization of re-entrant negative Poisson's ratio structure fabricated by selective laser melting , 2017 .

[70]  Chee Kai Chua,et al.  3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization , 2017 .

[71]  Jie Yin,et al.  Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility , 2017 .

[72]  Ayou Hao,et al.  Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement , 2017 .

[73]  Yaning Li,et al.  3D Printed Chiral Cellular Solids with Amplified Auxetic Effects Due to Elevated Internal Rotation   , 2017 .

[74]  Manuel Collet,et al.  Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials , 2017 .

[75]  Daphne Attard,et al.  Out-of-plane doming behaviour from constrained auxetics , 2017 .

[76]  Fabrizio Scarpa,et al.  Double‐Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties , 2016, Advanced materials.

[77]  Damiano Pasini,et al.  Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs , 2016, 1612.05988.

[78]  R. Natarajan,et al.  Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures , 2016 .

[79]  Ashutosh Kumar Singh,et al.  Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015 , 2016, The Lancet.

[80]  Hui Zheng,et al.  Vibration isolation characteristics of finite periodic tetra-chiral lattice coating filled with internal resonators , 2016 .

[81]  Lang Chen,et al.  Negative Poisson's Ratio in Modern Functional Materials , 2016, Advanced materials.

[82]  Matej Vesenjak,et al.  Auxetic Cellular Materials - a Review , 2016 .

[83]  G. Gnecco,et al.  Optimal design of low-frequency band gaps in anti-tetrachiral lattice meta-materials , 2016, 1608.01077.

[84]  H. H. Huang,et al.  Design and properties of 3D‐printed chiral auxetic metamaterials by reconfigurable connections , 2016 .

[85]  Gengkai Hu,et al.  Elastic Metamaterials Making Use of Chirality: A Review , 2016 .

[86]  Alessandro Airoldi,et al.  Composite Elements for Biomimetic Aerospace Structures with Progressive Shape Variation Capabilities , 2016 .

[87]  Michael E. Plesha,et al.  Chiral three‐dimensional isotropic lattices with negative Poisson's ratio , 2016 .

[88]  Xiuchang Huang,et al.  Study on the application and optimization of trichiral raft in a floating raft system , 2016 .

[89]  Onur Avci,et al.  Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms , 2016 .

[90]  Michael E. Plesha,et al.  Chiral three-dimensional lattices with tunable Poisson’s ratio , 2016 .

[91]  Abdel Magid Hamouda,et al.  Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach , 2016 .

[92]  Bo Li,et al.  Isotropic Negative Thermal Expansion Metamaterials. , 2015, ACS applied materials & interfaces.

[93]  A. Bacigalupo,et al.  High-frequency parametric approximation of the Floquet-Bloch spectrum for anti-tetrachiral materials , 2015, 1512.07803.

[94]  Hua Hongxing,et al.  A study on the isolation performance of trichiral lattices with gradient geometry , 2015 .

[95]  Fabrizio Scarpa,et al.  Composite chiral shear vibration damper , 2015 .

[96]  Andrea Bacigalupo,et al.  Auxetic anti-tetrachiral materials: Equivalent elastic properties and frequency band-gaps , 2015 .

[97]  Ruben Gatt,et al.  Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems , 2015 .

[98]  Li Yang,et al.  Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing , 2015 .

[99]  A. Bacigalupo,et al.  Simplified modelling of chiral lattice materials with local resonators , 2015, 1508.01624.

[100]  Qiang He,et al.  Mean compressive stress constitutive equation and crashworthiness optimization design of three novel honeycombs under axial compression , 2015 .

[101]  Fabrizio Scarpa,et al.  Cellular plates with auxetic rectangular perforations , 2015 .

[102]  Alessandro Airoldi,et al.  Chiral topologies for composite morphing structures – Part I: Development of a chiral rib for deformable airfoils , 2015 .

[103]  Alessandro Airoldi,et al.  Chiral topologies for composite morphing structures – Part II: Novel configurations and technological processes , 2015 .

[104]  Joseph N. Grima,et al.  Auxetic metamaterials exhibiting giant negative Poisson's ratios , 2015 .

[105]  Michael E. Plesha,et al.  Controllable thermal expansion of large magnitude in chiral negative Poisson's ratio lattices , 2015 .

[106]  Dan J Stein,et al.  Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 , 2015, The Lancet.

[107]  H. Hua,et al.  Experimental and numerical research on the underwater sound radiation of floating structures with covering layers , 2015 .

[108]  Ileana Streinu,et al.  Geometric auxetics , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[109]  Carolin Körner,et al.  A systematic approach to identify cellular auxetic materials , 2015 .

[110]  Ju Li,et al.  Engineering the shape and structure of materials by fractal cut , 2014, Proceedings of the National Academy of Sciences.

[111]  Umar Ansari,et al.  Review of Mechanics and Applications of Auxetic Structures , 2014 .

[112]  Jim Papadopoulos,et al.  Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[113]  C. Sun,et al.  A chiral elastic metamaterial beam for broadband vibration suppression , 2014 .

[114]  G. Hu,et al.  Micropolar continuum modelling of bi-dimensional tetrachiral lattices , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[115]  G. Hu,et al.  Micropolar modeling of planar orthotropic rectangular chiral lattices , 2014 .

[116]  H. Hua,et al.  Comparative Study of the Shock Resistance of Rubber Protective Coatings Subjected to Underwater Explosion , 2014 .

[117]  A. Bacigalupo,et al.  Homogenization of periodic hexa- and tetrachiral cellular solids , 2014, 1404.3786.

[118]  J. Rossiter,et al.  Shape memory polymer hexachiral auxetic structures with tunable stiffness , 2014 .

[119]  A. Poźniak,et al.  Poisson's ratio of rectangular anti‐chiral structures with size dispersion of circular nodes , 2014 .

[120]  M. Ruzzene,et al.  Internally resonating lattices for bandgap generation and low-frequency vibration control , 2013 .

[121]  Xi-Qiao Feng,et al.  Hierarchical chirality transfer in the growth of Towel Gourd tendrils , 2013, Scientific Reports.

[122]  Ruben Gatt,et al.  A realistic generic model for anti‐tetrachiral systems , 2013 .

[123]  F. Scarpa,et al.  A nonlinear auxetic structural vibration damper with metal rubber particles , 2013 .

[124]  Ruben Gatt,et al.  Smart metamaterials with tunable auxetic and other properties , 2013 .

[125]  Peng Song,et al.  Reciprocal frame structures made easy , 2013, ACM Trans. Graph..

[126]  Jinsong Leng,et al.  Elasticity of anti-tetrachiral anisotropic lattices , 2013 .

[127]  D. Avnir,et al.  On Left and Right: Chirality in Architecture , 2013 .

[128]  Sukhwinder K. Bhullar,et al.  Influence of Negative Poisson's Ratio on Stent Applications , 2013 .

[129]  J. Ganghoffer,et al.  Construction of micropolar continua from the asymptotic homogenization of beam lattices , 2012 .

[130]  Alessandro Airoldi,et al.  Design of a Morphing Airfoil with Composite Chiral Structure , 2012 .

[131]  Fabrizio Scarpa,et al.  Failure and energy absorption of plastic and composite chiral honeycombs , 2012 .

[132]  M. Brocato,et al.  A new type of stone dome based on Abeille’s bond , 2012 .

[133]  Yunan Prawoto,et al.  Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio , 2012 .

[134]  Guoliang Huang,et al.  Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices , 2012, 1203.4314.

[135]  Massimo Ruzzene,et al.  Elasto-static micropolar behavior of a chiral auxetic lattice , 2012 .

[136]  Chris J. Pearce,et al.  Studies of microstructural size effect and higher-order deformation in second-order computational homogenization , 2010 .

[137]  Fabrizio Scarpa,et al.  Flatwise buckling optimization of hexachiral and tetrachiral honeycombs , 2010 .

[138]  F. Scarpa,et al.  The transverse elastic properties of chiral honeycombs , 2010 .

[139]  Andrew Alderson,et al.  The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs , 2010 .

[140]  Ruben Gatt,et al.  Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading , 2010 .

[141]  M. Ruzzene,et al.  Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process , 2010 .

[142]  K. Bertoldi,et al.  Negative Poisson's Ratio Behavior Induced by an Elastic Instability , 2010, Advanced materials.

[143]  Massimo Ruzzene,et al.  Phononic properties of hexagonal chiral lattices , 2009 .

[144]  Olivier Baverel,et al.  Design of nexorades or reciprocal frame systems with the dynamic relaxation method , 2009 .

[145]  Massimo Ruzzene,et al.  Tensile properties of shape memory alloy chiral honeycombs , 2008 .

[146]  A. Spadoni Application of chiral cellular materials for the design of innovative components , 2008 .

[147]  Massimo Ruzzene,et al.  Smart shape memory alloy chiral honeycomb , 2008 .

[148]  Massimo Ruzzene,et al.  The hexachiral prismatic wingbox concept , 2008 .

[149]  Ruben Gatt,et al.  On the properties of auxetic meta‐tetrachiral structures , 2008 .

[150]  M. Ruzzene,et al.  Static Aeroelastic Response of Chiral-core Airfoils , 2007 .

[151]  Alessandro Spadoni,et al.  Numerical and experimental analysis of the static compliance of chiral truss-core airfoils , 2007 .

[152]  Massimo Ruzzene,et al.  Elastic buckling of hexagonal chiral cell honeycombs , 2007 .

[153]  K. Wojciechowski,et al.  MOLECULAR DYNAMICS SIMULATIONS OF AUXETIC FERROGEL , 2007 .

[154]  Massimo Ruzzene,et al.  Dynamic Response of Chiral Truss-core Assemblies , 2006 .

[155]  Massimo Ruzzene,et al.  Structural and Acoustic Behavior of Chiral Truss-Core Beams , 2006 .

[156]  Massimo Ruzzene,et al.  Modeling and testing of shape memory alloy chiral honeycomb structures , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[157]  Massimo Ruzzene,et al.  Chiral hexagonal cellular sandwich structure: a vibro-acoustic assessment , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[158]  Fabrizio Scarpa,et al.  Evaluation of hexagonal chiral structure for morphing airfoil concept , 2005 .

[159]  Massimo Ruzzene,et al.  Global and local linear buckling behavior of a chiral cellular structure , 2005 .

[160]  Joseph N. Grima,et al.  A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model , 2000 .

[161]  Joseph N. Grima,et al.  Auxetic behavior from rotating squares , 2000 .

[162]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[163]  Roderic S. Lakes,et al.  Cellular solid structures with unbounded thermal expansion , 1996 .

[164]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[165]  K. Wojciechowski,et al.  Two-dimensional isotropic system with a negative poisson ratio , 1989 .

[166]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[167]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[168]  Koryo Miura,et al.  Method of Packaging and Deployment of Large Membranes in Space , 1985 .

[169]  Robert Almgren,et al.  An isotropic three-dimensional structure with Poisson's ratio =−1 , 1985 .

[170]  Alexander G. Kolpakov,et al.  Determination of the average characteristics of elastic frameworks , 1985 .

[171]  M. Ashby,et al.  The mechanics of two-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[172]  A. Eringen,et al.  LINEAR THEORY OF MICROPOLAR ELASTICITY , 1965 .

[173]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[174]  Baron Kelvin William Thomson,et al.  Baltimore Lectures On Molecular Dynamics And The Wave Theory Of Light , 1901 .