Genetics of soft tissue tumors.

Sarcomas form a highly diverse group of rare tumors that are derived from connective tissue. More than 100 different malignant and benign soft tissue neoplasms can be recognized by histologic examination. Few diagnostic markers exist, and the cell of origin for many soft tissue tumors is unknown. The accurate diagnosis of many of these tumors therefore remains a challenge. The study of sarcomas has yielded many insights that can be applied to other neoplasms such as carcinoma. For example, the success of the treatment of gastrointestinal stromal tumor with Imatinib has led to an increased effort to find targeted therapies for other malignancies. Here we describe the known molecular changes in a number of sarcomas and focus on novel scientific approaches that can be expected to lead to improved diagnosis, prognostication, and therapy of sarcoma.

[1]  Robert J. Marinelli,et al.  The gene expression profile of extraskeletal myxoid chondrosarcoma , 2005, The Journal of pathology.

[2]  Tina Hernandez-Boussard,et al.  Determination of Stromal Signatures in Breast Carcinoma , 2005, PLoS biology.

[3]  Howard Y. Chang,et al.  Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Liu,et al.  Correlation of KIT and platelet-derived growth factor receptor α mutations with gene activation and expression profiles in gastrointestinal stromal tumors , 2005, Oncogene.

[5]  M. Cronin,et al.  A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. , 2004, The New England journal of medicine.

[6]  Eliot Marshall,et al.  Getting the Noise Out of Gene Arrays , 2004, Science.

[7]  Tina Hernandez-Boussard,et al.  Gastrointestinal stromal tumors (GISTs) with KIT and PDGFRA mutations have distinct gene expression profiles , 2004, Oncogene.

[8]  Michael Peacock,et al.  Hierarchical Clustering Analysis of Tissue Microarray Immunostaining Data Identifies Prognostically Significant Groups of Breast Carcinoma , 2004, Clinical Cancer Research.

[9]  P. Bühlmann,et al.  Gene Expression Signatures Identify Rhabdomyosarcoma Subtypes and Detect a Novel t(2;2)(q35;p23) Translocation Fusing PAX3 to NCOA1 , 2004, Cancer Research.

[10]  A. Gown,et al.  Immunohistochemical and Clinical Characterization of the Basal-Like Subtype of Invasive Breast Carcinoma , 2004, Clinical Cancer Research.

[11]  J. Fletcher,et al.  Protein Kinase C θ (PKCθ) Expression and Constitutive Activation in Gastrointestinal Stromal Tumors (GISTs) , 2004, Cancer Research.

[12]  R. West,et al.  Apo D in Soft Tissue Tumors: A Novel Marker for Dermatofibrosarcoma Protuberans , 2004, The American journal of surgical pathology.

[13]  Rameen Beroukhim,et al.  Molecular characterization of the tumor microenvironment in breast cancer. , 2004, Cancer cell.

[14]  C. Ball,et al.  The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. , 2004, The American journal of pathology.

[15]  P. Cin,et al.  Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling , 2004, Genes, chromosomes & cancer.

[16]  I. Ellis,et al.  Expression of luminal and basal cytokeratins in human breast carcinoma , 2004, The Journal of pathology.

[17]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[18]  N. Socci,et al.  Gene Expression in Gastrointestinal Stromal Tumors Is Distinguished by KIT Genotype and Anatomic Site , 2004, Clinical Cancer Research.

[19]  Ash A. Alizadeh,et al.  Gene Expression Signature of Fibroblast Serum Response Predicts Human Cancer Progression: Similarities between Tumors and Wounds , 2004, PLoS biology.

[20]  J. Fletcher,et al.  Biology of Gastrointestinal Stromal Tumors: KIT Mutations and Beyond , 2004, Cancer investigation.

[21]  David Botstein,et al.  Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans. , 2003, The American journal of pathology.

[22]  D. Botstein,et al.  Copyright © American Society for Investigative Pathology Tissue Microarray Validation of Epidermal Growth Factor Receptor and SALL2 in Synovial Sarcoma with Comparison to Tumors of Similar Histology , 2022 .

[23]  David Botstein,et al.  Endothelial cell diversity revealed by global expression profiling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Skubitz,et al.  Differential gene expression in leiomyosarcoma , 2003, Cancer.

[25]  William Stafford Noble,et al.  Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. , 2003, The American journal of pathology.

[26]  R. Tibshirani,et al.  Repeated observation of breast tumor subtypes in independent gene expression data sets , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Y. Yu,et al.  Gene expression analysis of human soft tissue leiomyosarcomas. , 2003, Human pathology.

[28]  P. Musiani,et al.  Development of rhabdomyosarcoma in HER-2/neu transgenic p53 mutant mice. , 2003, Cancer research.

[29]  C. Antonescu,et al.  Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  William Stafford Noble,et al.  Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[31]  Christine A Iacobuzio-Donahue,et al.  Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. , 2003, The American journal of pathology.

[32]  R. Wooster,et al.  Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling , 2003, British Journal of Cancer.

[33]  Samuel Singer,et al.  PDGFRA Activating Mutations in Gastrointestinal Stromal Tumors , 2003, Science.

[34]  Yudong D. He,et al.  A Gene-Expression Signature as a Predictor of Survival in Breast Cancer , 2002 .

[35]  V. Sondak,et al.  Response of extraabdominal desmoid tumors to therapy with imatinib mesylate , 2002, Cancer.

[36]  R. Tibshirani,et al.  Copyright © American Society for Investigative Pathology Short Communication Expression of Cytokeratins 17 and 5 Identifies a Group of Breast Carcinomas with Poor Clinical Outcome , 2022 .

[37]  J. Goldblum,et al.  Molecular characterization of soft tissue tumors , 2002, Current Oncology Reports.

[38]  M. Bittner,et al.  Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. , 2002, The American journal of pathology.

[39]  R. DePinho,et al.  Synergism between INK4a/ARF inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis , 2002, Nature Medicine.

[40]  Yusuke Nakamura,et al.  Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. , 2002, Cancer research.

[41]  David Botstein,et al.  Diversity, topographic differentiation, and positional memory in human fibroblasts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Eary,et al.  Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  C. Antonescu,et al.  Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans , 2002, International journal of cancer.

[44]  A. D. Van den Abbeele,et al.  Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. , 2002, The New England journal of medicine.

[45]  J. Fletcher,et al.  Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. , 2002, Human pathology.

[46]  L. Sobin,et al.  Diagnosis of gastrointestinal stromal tumors: A consensus approach. , 2002, Human pathology.

[47]  D. Botstein,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group , 2022 .

[48]  B. Druker,et al.  Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[49]  A. Suminoe,et al.  Immunotherapy with autologous dendritic cells and tumor-specific synthetic peptides for synovial sarcoma. , 2002, Journal of pediatric hematology/oncology.

[50]  J. Berzofsky,et al.  Pilot trial of tumor-specific peptide vaccination and continuous infusion interleukin-2 in patients with recurrent Ewing sarcoma and alveolar rhabdomyosarcoma: an inter-institute NIH study. , 2002, Medical and pediatric oncology.

[51]  P S Meltzer,et al.  Gastrointestinal stromal tumors with KIT mutations exhibit a remarkably homogeneous gene expression profile. , 2001, Cancer research.

[52]  C. J. Chen,et al.  KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. , 2001, Cancer research.

[53]  Sigrid Stroobants,et al.  Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study , 2001, The Lancet.

[54]  J. Goldblum,et al.  Enzinger and Weiss's Soft Tissue Tumors , 2001 .

[55]  M. Pierotti,et al.  Growth‐inhibitory effect of STI571 on cells transformed by the COL1A1/PDGFB rearrangement , 2001, International journal of cancer.

[56]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Weinberg,et al.  Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. , 2001, Experimental cell research.

[58]  R. Kempson,et al.  Tumors of the soft tissues , 2001 .

[59]  C. Roberts,et al.  Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  K. Kinzler,et al.  Genes expressed in human tumor endothelium. , 2000, Science.

[61]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[62]  P. D. Dal Cin,et al.  TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. , 2000, The American journal of pathology.

[63]  P. Hein,et al.  Carcinoma-associated fibroblasts stimulate tumor progression of initiated human epithelium , 2000, Breast Cancer Research.

[64]  Sabine Tejpar,et al.  Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor) , 1999, Oncogene.

[65]  O. Delattre,et al.  Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. , 1999, American journal of human genetics.

[66]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[67]  B. Spiegelman,et al.  Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  L. Kluwe,et al.  Loss of NF1 allele in schwann cells but not in fibroblasts derived from an NF1‐associated neurofibroma , 1999, Genes, chromosomes & cancer.

[69]  F. Collin,et al.  Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors , 1999, Genes, chromosomes & cancer.

[70]  J. Biegel,et al.  Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. , 1999, Cancer research.

[71]  S. Ishida,et al.  The genomic breakpoint and chimeric transcripts in the EWSR1–ETV4/E1AF gene fusion in Ewing sarcoma , 1998, Cytogenetic and Genome Research.

[72]  P. Sorensen,et al.  ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. , 1998, Cancer research.

[73]  J. Fletcher,et al.  Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. , 1998, The American journal of pathology.

[74]  J. Fletcher,et al.  Various regions within the alpha‐helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant‐cell fibroblastomas , 1998, Genes, chromosomes & cancer.

[75]  W. Gerald,et al.  Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[76]  S. Hirota,et al.  Familial gastrointestinal stromal tumours with germline mutation of the KIT gene , 1998, Nature Genetics.

[77]  Olivier Delattre,et al.  Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer , 1998, Nature.

[78]  S. Knuutila,et al.  Different patterns of DNA copy number changes in gastrointestinal stromal tumors, leiomyomas, and schwannomas. , 1998, Human pathology.

[79]  D. Leroith,et al.  Expression of a kinase‐deficient IGF‐I‐R suppresses tumorigenicity of rhabdomyosarcoma cells constitutively expressing a wild type IGF‐I‐R , 1998, International Journal of Cancer.

[80]  M. Ushijima,et al.  Detection of TLS/FUS‐CHOP Fusion Transcripts in Myxoid and Round Cell Liposarcomas by Nested Reverse Transcription‐Polymerase Chain Reaction Using Archival Paraffin‐embedded Tissues , 1998, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[81]  J. Fletcher,et al.  Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. , 1998, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[82]  P. Sorensen,et al.  A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma , 1998, Nature Genetics.

[83]  S. Hirota,et al.  Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. , 1998, Science.

[84]  W. Gerald,et al.  The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour , 1997, Nature Genetics.

[85]  B. Alman,et al.  Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). , 1997, The American journal of pathology.

[86]  G. Thomas,et al.  A new member of the ETS family fused to EWS in Ewing tumors , 1997, Oncogene.

[87]  B. Spiegelman,et al.  Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[88]  J. Dumanski,et al.  Deregulation of the platelet-derived growth factor β-chain gene via fusion with collagen gene COL1A1 in dermatof ibrosarcoma protuberans and giant-cell fibroblastoma , 1997, Nature Genetics.

[89]  S. Ishida,et al.  Fusion of an ETS‐family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy , 1996, Genes, chromosomes & cancer.

[90]  F. Mitelman,et al.  Correlation between clinicopathological features and karyotype in lipomatous tumors. A report of 178 cases from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. , 1996, The American journal of pathology.

[91]  S. Mori,et al.  Chimeric TLS/FUS-CHOP gene expression and the heterogeneity of its junction in human myxoid and round cell liposarcoma. , 1995, The American journal of pathology.

[92]  C. S. Snyder,et al.  Clonal changes in inflammatory pseudotumor of the lung. A case report , 1995, Cancer.

[93]  F. Barr,et al.  Wild type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains. , 1995, Oncogene.

[94]  F. Hecht,et al.  Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. , 1995, Cancer research.

[95]  G. Rouleau,et al.  The neurofibromatosis type 2 gene product, schwannomin, suppresses growth of NIH 3T3 cells. , 1995, Cancer research.

[96]  K. A. Lee,et al.  Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. , 1995, Oncogene.

[97]  C. Denny,et al.  A variant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. , 1995, Oncogene.

[98]  F. Barr,et al.  The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3 , 1995, Molecular and cellular biology.

[99]  J. Fletcher,et al.  Chromosome aberrations in desmoid tumors. Trisomy 8 may be a predictor of recurrence. , 1995, Cancer genetics and cytogenetics.

[100]  A. Sandberg,et al.  Cytogenetics of Bone and Soft Tissue Tumors , 1995 .

[101]  J. Fletcher,et al.  Ring chromosomes in dermatofibrosarcoma protuberans are composed of interspersed sequences from chromosomes 17 and 22. , 1995, The American journal of pathology.

[102]  L. Helman,et al.  In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2. , 1994, Cancer research.

[103]  C. Cooper,et al.  Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma , 1994, Nature Genetics.

[104]  R. Kempson,et al.  Problematic Uterine Smooth Muscle Neoplasms: A Clinicopathologic Study of 213 Cases , 1994, The American journal of surgical pathology.

[105]  M. Ladanyi,et al.  Chromosomal aberrations in soft tissue tumors. Relevance to diagnosis, classification, and molecular mechanisms. , 1994, The American journal of pathology.

[106]  W. Gerald,et al.  Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. , 1994, Cancer research.

[107]  J. Biegel,et al.  Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. , 1994, Cancer research.

[108]  L. Resch,et al.  Omental‐mesenteric inflammatory pseudotumor. Cytogenetic demonstration of genetic changes and monoclonality in one tumor , 1994, Cancer.

[109]  J. Fletcher,et al.  Fibrosarcoma in Infants and Children: Application of New Techniques , 1994, The American journal of surgical pathology.

[110]  M. Sanson,et al.  The neurofibromatosis type 2 gene is inactivated in schwannomas. , 1994, Human molecular genetics.

[111]  T. Iwama,et al.  Coexistence of somatic and germ-line mutations of APC gene in desmoid tumors from patients with familial adenomatous polyposis. , 1993, Cancer research.

[112]  J. Downing,et al.  Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. , 1993, Cancer research.

[113]  B. Emanuel,et al.  Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma , 1993, Nature Genetics.

[114]  J. Fletcher,et al.  Chromosome aberrations in mesoblastic nephroma. , 1993, The American journal of pathology.

[115]  J. Delhanty,et al.  Somatic mutation of APC gene in desmoid tumour in familial adenomatous polyposis , 1993, The Lancet.

[116]  R. Motzer,et al.  A recurring translocation, t(11;22)(p13;q11.2), characterizes intra-abdominal desmoplastic small round-cell tumors. , 1993, Cancer genetics and cytogenetics.

[117]  G. Thomas,et al.  EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts , 1993, Nature Genetics.

[118]  N. Mandahl,et al.  Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma , 1993, Nature.

[119]  S. Pulst,et al.  Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2 , 1993, Nature.

[120]  J. Biegel,et al.  Translocation (11;22)(p13;q12): Primary change in intra‐abdominal desmoplastic small round cell tumor , 1993, Genes, chromosomes & cancer.

[121]  J. Biegel,et al.  Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma , 1993, Nature Genetics.

[122]  F. Collins,et al.  Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis , 1993, Nature Genetics.

[123]  F. Mitelman,et al.  Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11) , 1992, Genes, chromosomes & cancer.

[124]  G. Thomas,et al.  Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours , 1992, Nature.

[125]  S. Leong,et al.  Cytogenetic findings in liposarcoma correlate with histopathologic subtypes , 1992, Cancer.

[126]  F. Collins,et al.  Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients , 1992, Nature.

[127]  D. Lowy,et al.  Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis , 1992, Cell.

[128]  W. Gerald,et al.  Intra‐abdominal Desmoplastic Small Round‐Cell Tumor: Report of 19 Cases of a Distinctive Type of High‐Grade Polyphenotypic Malignancy Affecting Young Individuals , 1991, The American journal of surgical pathology.

[129]  F. Grant,et al.  Platelet-derived growth factor (PDGF) stimulates PDGF receptor subunit dimerization and intersubunit trans-phosphorylation. , 1991, The Journal of biological chemistry.

[130]  P. Sharp,et al.  Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[131]  G. Pinkus,et al.  Diagnostic relevance of clonal cytogenetic aberrations in malignant soft-tissue tumors. , 1991, The New England journal of medicine.

[132]  F. Tamanoi,et al.  The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae , 1990, Cell.

[133]  Margaret Robertson,et al.  The neurofibromatosis type 1 gene encodes a protein related to GAP , 1990, Cell.

[134]  M. Ewen,et al.  An N-Terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110 Rb and a second cellular protein, p120 , 1989, Cell.

[135]  J. Thiery,et al.  Chromosomes in Ewing's sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). , 1988, Cancer genetics and cytogenetics.

[136]  C. Turc‐Carel,et al.  Chromosomes in solid tumors and beyond. , 1988, Cancer research.

[137]  F. Mitelman,et al.  Rings, dicentrics, and telomeric association in histiocytomas. , 1988, Cancer genetics and cytogenetics.

[138]  P. Cin,et al.  Recurrent breakpoints at 9q31 and 22q12.2 in extraskeletal myxoid chondrosarcoma. , 1988, Cancer genetics and cytogenetics.

[139]  H. Dvorak Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. , 1986, The New England journal of medicine.

[140]  C. Turc‐Carel,et al.  Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. , 1986, Cancer genetics and cytogenetics.

[141]  G. Lenoir,et al.  Chromosome study of Ewing's sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12). , 1984, Cancer genetics and cytogenetics.

[142]  Bolande Rp Congenital mesoblastic nephroma of infancy. , 1973 .

[143]  A. Stout Fibrosarcoma in infants and children , 1962 .