Rational swarm for global optimisation

In this paper, we propose a novel bio–inspired multi–agent co–operative searching methodology for global optimisation, named Rational Swarm algorithm. It can be used both as a meta–heuristic guiding local search algorithm and as a high–level multi–agent co–operative searching strategy to coordinate multiple agents using meta–heuristics. In this work, the Rational Swarm methodology has been applied to a popular meta–heuristics Simulated Annealing (SA) and a pure local search algorithm Monotonic Sequential Basin Hopping (MSBH). Numerical experiments on various continuous optimisation problems show Rational Swarm can improve the performance of applied meta–heuristics/heuristics in terms of solution quality and robustness under the same computational budget. Convergence analysis gives the theoretical insights about why the proposed Rational Swarm Methodology will work.

[1]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[2]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[3]  Emile H. L. Aarts,et al.  Parallel implementations of the statistical cooling algorithm , 1986, Integr..

[4]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[5]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[6]  Miroslaw Malek,et al.  Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem , 1990 .

[7]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[8]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.

[9]  Roberto Vaccaro,et al.  Improving search by incorporating evolution principles in parallel Tabu Search , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[10]  J. Onuchic,et al.  Funnels, pathways, and the energy landscape of protein folding: A synthesis , 1994, Proteins.

[11]  János D. Pintér,et al.  Global optimization in action , 1995 .

[12]  Emile H. L. Aarts,et al.  Parallel local search , 1995, J. Heuristics.

[13]  Kyung-Geun Lee,et al.  Synchronous and Asynchronous Parallel Simulated Annealing with Multiple Markov Chains , 1996, IEEE Trans. Parallel Distributed Syst..

[14]  Michel Gendreau,et al.  Parallel asynchronous tabu search for multicommodity location-allocation with balancing requirements , 1996, Ann. Oper. Res..

[15]  X. Yao,et al.  Combining landscape approximation and local search in global optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[16]  Michel Gendreau,et al.  Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching , 1999, Transp. Sci..

[17]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[18]  Robert H. Leary,et al.  Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..

[19]  Celso C. Ribeiro,et al.  Strategies for the Parallel Implementation of Metaheuristics , 2002 .

[20]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[21]  P. Moorcroft,et al.  Mechanistic home range analysis , 2006 .

[22]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[23]  Michael C. Fu,et al.  A Model Reference Adaptive Search Method for Global Optimization , 2007, Oper. Res..

[24]  Griffin Caprio,et al.  Parallel Metaheuristics , 2008, IEEE Distributed Systems Online.