Software-Defined Radios for CubeSat Applications: A Brief Review and Methodology

[1]  Christopher P. Bridges,et al.  Software Defined Radio (SDR) architecture to support multi-satellite communications , 2015, 2015 IEEE Aerospace Conference.

[2]  Kwan-Wu Chin,et al.  A high gain S-band slot antenna with MSS for CubeSat , 2018, Ann. des Télécommunications.

[3]  Vladimir I. Prodanov,et al.  Power Amplifier Principles and Modern Design Techniques , 2008 .

[4]  Jason Anderson,et al.  CubeSats in Detail A Survey of CubeSat Communication Systems , 2009 .

[5]  Hyuk Park,et al.  Implementation of a GNSS-R Payload Based on Software-Defined Radio for the 3CAT-2 Mission , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Richard C. Reinhart,et al.  NASA's space communications and navigation test bed aboard the international space station , 2013, IEEE Aerospace and Electronic Systems Magazine.

[7]  Christopher P. Bridges,et al.  Software defined radios for small satellites , 2014, 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).

[8]  C. P. Bridges,et al.  STRaND-2: Visual inspection, proximity operations & nanosatellite docking , 2013, 2013 IEEE Aerospace Conference.

[9]  F. Raab,et al.  Power amplifiers and transmitters for RF and microwave , 2002 .

[10]  Jaime Velasco-Medina,et al.  Design of a baseband processor for software radio using FPGAs , 2008, 2008 IEEE International SOC Conference.

[11]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[12]  Michael Swartwout,et al.  The First One Hundred CubeSats: A Statistical Look , 2013 .

[13]  Jason Hsu,et al.  Software defined radio for small satellites , 2015, 2015 IEEE Aerospace Conference.

[14]  N.B. Carvalho,et al.  PAPR Evaluation in Multi-Mode SDR Transceivers , 2008, 2008 38th European Microwave Conference.

[15]  Craig Underwood,et al.  Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST) , 2015 .

[16]  Alexander M. Wyglinski,et al.  Modular FPGA-based software defined radio for CubeSats , 2012, 2012 IEEE International Conference on Communications (ICC).

[17]  Henry R. Hertzfeld,et al.  Cubesats: Cost-effective science and technology platforms for emerging and developing nations , 2011 .

[18]  Anne Dorothy Marinan From CubeSats to constellations : systems design and performance analysis , 2013 .

[19]  Mark Campbell,et al.  CubeSat design for LEO-based Earth science missions , 2002, Proceedings, IEEE Aerospace Conference.

[20]  Thang X. Vu,et al.  16-QAM Transmitter and Receiver Design Based on FPGA , 2010, 2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications.

[21]  Ahmet Erdem,et al.  HAVELSAT: A software defined radio experimentation CubeSat , 2015, 2015 7th International Conference on Recent Advances in Space Technologies (RAST).

[22]  S. O. Popescu,et al.  Review of PSK and QAM — Digital modulation techniques on FPGA , 2010, 2010 International Joint Conference on Computational Cybernetics and Technical Informatics.

[23]  Mark Rice,et al.  Increasing the capability of CubeSat-based software-defined radio applications , 2016, 2016 IEEE Aerospace Conference.

[24]  Otilia Popescu,et al.  Power Budgets for CubeSat Radios to Support Ground Communications and Inter-Satellite Links , 2017, IEEE Access.