暂无分享,去创建一个
Robert Scheichl | Lars Grasedyck | Sergey Dolgov | Paul B. Rohrbach | L. Grasedyck | Robert Scheichl | S. Dolgov
[1] Sertac Karaman,et al. A continuous analogue of the tensor-train decomposition , 2015, Computer Methods in Applied Mechanics and Engineering.
[2] Markus Weimar. Breaking the curse of dimensionality , 2015 .
[3] Ivan Oseledets,et al. Fast solution of multi-dimensional parabolic problems in the tensor train/quantized tensor train–format with initial application to the Fokker-Planck equation , 2012 .
[4] Johnathan M. Bardsley,et al. MCMC-Based Image Reconstruction with Uncertainty Quantification , 2012, SIAM J. Sci. Comput..
[5] J. Miller. Numerical Analysis , 1966, Nature.
[6] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[7] B. Khoromskij,et al. Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs , 2010 .
[8] M. Chiani,et al. Improved exponential bounds and approximation for the Q-function with application to average error probability computation , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.
[9] Daniele Venturi,et al. Dynamic tensor approximation of high-dimensional nonlinear PDEs , 2020, J. Comput. Phys..
[10] Robert Scheichl,et al. A Hybrid Alternating Least Squares-TT-Cross Algorithm for Parametric PDEs , 2017, SIAM/ASA J. Uncertain. Quantification.
[11] C. Schwab,et al. Deep neural network expression of posterior expectations in Bayesian PDE inversion , 2020, Inverse Problems.
[12] Jo Eidsvik,et al. Norges Teknisk-naturvitenskapelige Universitet Iterative Numerical Methods for Sampling from High Dimensional Gaussian Distributions Iterative Numerical Methods for Sampling from High Dimensional Gaussian Distributions , 2022 .
[13] R. Schneider,et al. Sampling-free Bayesian inversion with adaptive hierarchical tensor representations , 2018 .
[14] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[15] U. Schollwoeck. The density-matrix renormalization group , 2004, cond-mat/0409292.
[16] Christoph Schwab,et al. Low-rank tensor structure of linear diffusion operators in the TT and QTT formats☆ , 2013 .
[17] B. Khoromskij,et al. DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator , 2010 .
[18] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[19] Endre Süli,et al. Greedy Approximation of High-Dimensional Ornstein–Uhlenbeck Operators , 2011, Found. Comput. Math..
[20] Ivan V. Oseledets,et al. Fast Multidimensional Convolution in Low-Rank Tensor Formats via Cross Approximation , 2015, SIAM J. Sci. Comput..
[21] Colin Fox,et al. Approximation and sampling of multivariate probability distributions in the tensor train decomposition , 2018, Statistics and Computing.
[22] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[23] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[24] I. Oseledets. Constructive Representation of Functions in Low-Rank Tensor Formats , 2012, Constructive Approximation.
[25] Matthias Morzfeld,et al. Localization for MCMC: sampling high-dimensional posterior distributions with local structure , 2017, J. Comput. Phys..
[26] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[27] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[28] Reinhold Schneider,et al. Adaptive stochastic Galerkin FEM with hierarchical tensor representations , 2015, Numerische Mathematik.
[29] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[30] Sergey V. Dolgov,et al. A Tensor Decomposition Algorithm for Large ODEs with Conservation Laws , 2014, Comput. Methods Appl. Math..
[31] Youssef M. Marzouk,et al. Spectral Tensor-Train Decomposition , 2014, SIAM J. Sci. Comput..
[32] Zhinan Zhang,et al. The rank of a random matrix , 2007, Appl. Math. Comput..
[33] B. Khoromskij. Tensor numerical methods for multidimensional PDES: theoretical analysis and initial applications , 2015 .
[34] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[35] C. Fox,et al. Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials , 2015, 1505.03512.
[36] Lars Grasedyck,et al. Polynomial Approximation in Hierarchical Tucker Format by Vector – Tensorization , 2010 .
[37] Jaromír Šimša,et al. The bestL2-approximation by finite sums of functions with separable variables , 1992 .
[38] H. Rue. Fast sampling of Gaussian Markov random fields , 2000 .
[39] Hermann G. Matthies,et al. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format , 2015, SIAM/ASA J. Uncertain. Quantification.
[40] Colin Fox,et al. Fast Sampling in a Linear-Gaussian Inverse Problem , 2015, SIAM/ASA J. Uncertain. Quantification.
[41] Boris N. Khoromskij,et al. Two-Level QTT-Tucker Format for Optimized Tensor Calculus , 2013, SIAM J. Matrix Anal. Appl..
[42] Tiangang Cui,et al. Deep Composition of Tensor Trains using Squared Inverse Rosenblatt Transports , 2020, ArXiv.
[43] Miroslav Fiedler,et al. Structure ranks of matrices , 1993 .
[44] Catherine E. Powell,et al. An Introduction to Computational Stochastic PDEs , 2014 .
[45] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[46] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .