A Posteriori Error Estimates with Boundary Correction for a Cut Finite Element Method

In this work we study a residual based a posteriori error estimation for the CutFEM method applied to an elliptic model problem. We consider the problem with non-polygonal boundary and the analysis takes into account the geometry and data approximation on the boundary. The reliability and efficiency are theoretically proved. Moreover, constants are robust with respect to how the domain boundary cuts the mesh.

[1]  Luke Swift,et al.  Geometrically unfitted finite element methods for the Helmholtz equation , 2018 .

[2]  W. Wall,et al.  A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions , 2017, 1706.05897.

[3]  Roland Glowinski,et al.  Error estimates for fictitious domain/penalty/finite element methods , 1992 .

[4]  Peter Hansbo,et al.  A hierarchical NXFEM for fictitious domain simulations , 2011 .

[5]  Willy Dörfler,et al.  An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..

[6]  Benedikt Schott,et al.  A stabilized Nitsche‐type extended embedding mesh approach for 3D low‐ and high‐Reynolds‐number flows , 2016 .

[7]  Robert E. Barnhill,et al.  Computable error bounds for finite element approximations to the Dirichlet problem , 1982 .

[8]  Peter Hansbo,et al.  A cut finite element method with boundary value correction , 2015, Math. Comput..

[9]  Benedikt Schott,et al.  A stabilized Nitsche cut finite element method for the Oseen problem , 2016, 1611.02895.

[10]  Peter Hansbo,et al.  Characteristic cut finite element methods for convection–diffusion problems on time dependent surfaces , 2015 .

[11]  Mats G. Larson,et al.  Graded parametric CutFEM and CutIGA for elliptic boundary value problems in domains with corners , 2018, Computer Methods in Applied Mechanics and Engineering.

[12]  Silvia Bertoluzza,et al.  The Fat Boundary Method: Semi-Discrete Scheme and Some Numerical Experiments , 2005 .

[13]  Stéphane P. A. Bordas,et al.  Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation , 2017, Computer Methods in Applied Mechanics and Engineering.

[14]  C. M. Elliott,et al.  A Finite-element Method for Solving Elliptic Equations with Neumann Data on a Curved Boundary Using Unfitted Meshes , 1984 .

[15]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[16]  Maxim A. Olshanskii,et al.  Numerical Analysis and Scientific Computing Preprint Seria Inf-sup stability of geometrically unfitted Stokes finite elements , 2016 .

[17]  R. Verfiirth A posteriori error estimation and adaptive mesh-refinement techniques , 2001 .

[18]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[19]  Alexandre Ern,et al.  A Cut Cell Hybrid High-Order Method for Elliptic Problems with Curved Boundaries , 2017, Lecture Notes in Computational Science and Engineering.

[20]  Christoph Lehrenfeld,et al.  A Higher Order Isoparametric Fictitious Domain Method for Level Set Domains , 2016, ArXiv.

[21]  André Massing,et al.  A stabilized cut discontinuous Galerkin framework: I. Elliptic boundary value and interface problems , 2018, Computer Methods in Applied Mechanics and Engineering.

[22]  Mats G. Larson,et al.  Fictitious domain method with boundary value correction using penalty-free Nitsche method , 2016, J. Num. Math..

[23]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[24]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[25]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[26]  Mats G. Larson,et al.  CutIGA with basis function removal , 2018, Adv. Model. Simul. Eng. Sci..

[27]  Erik Burman,et al.  A Stabilized Cut Finite Element Method for the Three Field Stokes Problem , 2014, SIAM J. Sci. Comput..

[28]  P. Hansbo,et al.  Shape optimization using the cut finite element method , 2016, 1611.05673.

[29]  Tomas Bengtsson,et al.  Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .

[30]  Eddie Wadbro,et al.  Acoustic shape optimization using cut finite elements , 2018 .

[31]  James H. Bramble,et al.  A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries , 1994 .

[32]  Zhiqiang Cai,et al.  Residual-based a posteriori error estimate for interface problems: Nonconforming linear elements , 2017, Math. Comput..

[33]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[34]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[35]  Peter Hansbo,et al.  Cut Finite Element Methods for Linear Elasticity Problems , 2017, 1703.04377.

[36]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[37]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[38]  Peter Hansbo,et al.  A Cut Finite Element Method for the Bernoulli Free Boundary Value Problem , 2016, 1609.02836.

[39]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[40]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[41]  Mats G. Larson,et al.  A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary , 2013, Numerische Mathematik.

[42]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..