Neo-Classical Minimax Problems , Thresholding , and Adaptation

We study the problem of estimating from data Y N( ; ) under squared-error loss. We de ne three new scalar minimax problems in which the risk is weighted by the size of . Simple thresholding gives asymptotically minimax estimates of all three problems. We indicate the relationships of the new problems to each other and to two other neo-classical problems: the problems of the bounded normal mean and of the risk-constrained normal mean. Via the wavelet transform, these results have implications for adaptive function estimation, to: (1) estimating functions of unknown type and degree of smoothness in a global ` norm; (2) estimating a function of unknown degree of local Holder smoothness at a xed point. In setting (2), the scalar minimax results imply: (a) that it is not possible to fully adapt to unknown degree of smoothness { adaptation imposes a performance cost; and (b) that simple thresholding of the empirical wavelet transform gives an estimate of a function at a xed point which is, to within constants, optimally adaptive to unknown degree of smoothness.

[1]  J. Wolfowitz Minimax Estimates of the Mean of a Normal Distribution with Known Variance , 1950 .

[2]  B. Levit On Asymptotic Minimax Estimates of the Second Order , 1981 .

[3]  G. Casella,et al.  Estimating a Bounded Normal Mean , 1981 .

[4]  P. Bickel Minimax Estimation of the Mean of a Normal Distribution when the Parameter Space is Restricted , 1981 .

[5]  P. Bickel MINIMAX ESTIMATION OF THE MEAN OF A NORMAL DISTRIBUTION SUBJECT TO DOING WELL AT A POINT , 1983 .

[6]  M. Nussbaum Spline Smoothing in Regression Models and Asymptotic Efficiency in $L_2$ , 1985 .

[7]  I. Ibragimov,et al.  On Nonparametric Estimation of the Value of a Linear Functional in Gaussian White Noise , 1985 .

[8]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[9]  D. Donoho,et al.  Minimax Risk Over Hyperrectangles, and Implications , 1990 .

[10]  D. Donoho,et al.  Geometrizing Rates of Convergence, III , 1991 .

[11]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[12]  O. Lepskii On a Problem of Adaptive Estimation in Gaussian White Noise , 1991 .

[13]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[14]  D. Donoho,et al.  Renormalization Exponents and Optimal Pointwise Rates of Convergence , 1992 .

[15]  G. Kerkyacharian,et al.  Density estimation in Besov spaces , 1992 .

[16]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[17]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[18]  Iain M. Johnstone,et al.  Estimation d'une densité de probabilité par méthode d'ondelettes , 1992 .

[19]  R. DeVore,et al.  Fast wavelet techniques for near-optimal image processing , 1992, MILCOM 92 Conference Record.

[20]  D. Donoho Smooth Wavelet Decompositions with Blocky Coefficient Kernels , 1993 .

[21]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[22]  I. Daubechies,et al.  Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .

[23]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[24]  I. Johnstone On Minimax Estimation of a Sparse Normal Mean Vector , 1994 .

[25]  I. Johnstone Minimax Bayes, Asymptotic Minimax and Sparse Wavelet Priors , 1994 .

[26]  D. Donoho Statistical Estimation and Optimal Recovery , 1994 .

[27]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .