Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states

A molecular model that provides a framework for interpreting the wealth of functional information obtained on the E. coli F-ATP synthase has been generated using cryo-electron microscopy. Three different states that relate to rotation of the enzyme were observed, with the central stalk’s ε subunit in an extended autoinhibitory conformation in all three states. The Fo motor comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side of the membrane indicate the entry and exit channels for protons. The proton translocating subunit contains near parallel helices inclined by ~30° to the membrane, a feature now synonymous with rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that bifurcates toward the membrane with its helices separating to embrace subunit a from two sides. DOI: http://dx.doi.org/10.7554/eLife.21598.001

[1]  F. Dahlquist,et al.  Structural features of the ε subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy , 1995, Nature Structural Biology.

[2]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[3]  T. F. Laughlin,et al.  ATP synthase: a molecular therapeutic drug target for antimicrobial and antitumor peptides. , 2013, Current medicinal chemistry.

[4]  B. Cain,et al.  Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit. , 1989, The Journal of biological chemistry.

[5]  Alexander Hahn,et al.  Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology , 2016, Molecular cell.

[6]  G. Cingolani,et al.  Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an auto-inhibited conformation , 2011, Nature Structural &Molecular Biology.

[7]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[8]  John L. Rubinstein,et al.  Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance , 2016, Proceedings of the National Academy of Sciences.

[9]  Samir Benlekbir,et al.  Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase , 2015, Nature.

[10]  R. Iino,et al.  Operation mechanism of FoF1‐adenosine triphosphate synthase revealed by its structure and dynamics , 2013, IUBMB life.

[11]  Ilya A. Balabin,et al.  Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. , 2004, Biophysical journal.

[12]  S. Howitt,et al.  The proton pore in the Escherichia coli F0F1-ATPase: substitution of glutamate by glutamine at position 219 of the alpha-subunit prevents F0-mediated proton permeability. , 1988, Biochimica et biophysica acta.

[13]  Michael Börsch,et al.  36° step size of proton‐driven c‐ring rotation in FoF1‐ATP synthase , 2009, The EMBO journal.

[14]  Robert R. Ishmukhametov,et al.  A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes , 2016, Nature Communications.

[15]  Karen M. Davies,et al.  Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase , 2015, Nature.

[16]  Gabriele Deckers-Hebestreit,et al.  Constant c10 Ring Stoichiometry in the Escherichia coli ATP Synthase Analyzed by Cross-Linking , 2009, Journal of bacteriology.

[17]  Masasuke Yoshida,et al.  Observations of rotation within the FoF1‐ATP synthase: deciding between rotation of the Fo c subunit ring and artifact , 2000, FEBS letters.

[18]  R. H. Fillingame,et al.  Structure of the Membrane Domain of Subunit b of the Escherichia coli F0F1 ATP Synthase* , 1999, The Journal of Biological Chemistry.

[19]  Masasuke Yoshida,et al.  Structure of a thermophilic F1‐ATPase inhibited by an ε‐subunit: deeper insight into the ε‐inhibition mechanism , 2015, The FEBS journal.

[20]  P. Friedl,et al.  An Asp—Asn substitution in the proteolipid subnit of the ATP‐synthase from Escherichia coli leads to a non‐functional proton channel , 1982, FEBS Letters.

[21]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[22]  A. Leslie,et al.  Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria , 2010, Proceedings of the National Academy of Sciences.

[23]  Masasuke Yoshida,et al.  Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[25]  Masasuke Yoshida,et al.  ATP synthase — a marvellous rotary engine of the cell , 2001, Nature Reviews Molecular Cell Biology.

[26]  R. H. Fillingame,et al.  Structural Interactions between Transmembrane Helices 4 and 5 of Subunit a and the Subunit c Ring of Escherichia coli ATP Synthase* , 2008, Journal of Biological Chemistry.

[27]  Robert R. Ishmukhametov,et al.  Ultrafast purification and reconstitution of His-tagged cysteine-less Escherichia coli F1Fo ATP synthase. , 2005, Biochimica et biophysica acta.

[28]  Masasuke Yoshida,et al.  Essential arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the F(o) proton channel. , 2010, The Biochemical journal.

[29]  J. Weber,et al.  Structural characterization of the interaction of the delta and alpha subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy. , 2005, Biochemistry.

[30]  J. Symerský,et al.  Structure of the c10 Ring of the Yeast Mitochondrial ATP Synthase in the Open Conformation , 2012, Nature Structural &Molecular Biology.

[31]  R. H. Fillingame,et al.  Transmembrane Topography of Subunit a in the Escherichia coli F1F0 ATP Synthase* , 1998, The Journal of Biological Chemistry.

[32]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[33]  Robert R. Ishmukhametov,et al.  ATP synthesis without R210 of subunit a in the Escherichia coli ATP synthase. , 2008, Biochimica et biophysica acta.

[34]  R. H. Fillingame,et al.  Aqueous Access Channels in Subunit a of Rotary ATP Synthase* , 2003, The Journal of Biological Chemistry.

[35]  R. H. Fillingame,et al.  Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Stefanie Keis,et al.  Purification and Biochemical Characterization of the F1Fo-ATP Synthase from Thermoalkaliphilic Bacillus sp. Strain TA2.A1 , 2003, Journal of bacteriology.

[37]  S. Howitt,et al.  The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. , 1987, Biochimica et biophysica acta.

[38]  A. Leslie,et al.  Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution , 2015, Proceedings of the National Academy of Sciences.

[39]  B. Cain,et al.  Impaired proton conductivity resulting from mutations in the a subunit of F1F0 ATPase in Escherichia coli. , 1986, The Journal of biological chemistry.

[40]  R. H. Fillingame,et al.  The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[42]  Takeharu Nagai,et al.  Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators , 2009, Proceedings of the National Academy of Sciences.

[43]  R. H. Fillingame,et al.  Subunit a Facilitates Aqueous Access to a Membrane-embedded Region of Subunit c in Escherichia coli F1F0 ATP Synthase* , 2008, Journal of Biological Chemistry.

[44]  Lawrence K. Lee,et al.  The dynamic stator stalk of rotary ATPases , 2012, Nature Communications.

[45]  G. Oster,et al.  ATP synthase: two motors, two fuels. , 1999, Structure.

[46]  P. Dimroth,et al.  Unique rotary ATP synthase and its biological diversity. , 2008, Annual review of biophysics.

[47]  John E. Walker,et al.  Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit. , 2005, Journal of molecular biology.

[48]  W. Junge,et al.  ATP synthase: an electrochemical transducer with rotatory mechanics. , 1997, Trends in biochemical sciences.

[49]  W. Kühlbrandt,et al.  Rotary ATPases: A New Twist to an Ancient Machine. , 2016, Trends in biochemical sciences.

[50]  S. Vik,et al.  A Novel Labeling Approach Supports the Five-transmembrane Model of Subunit a of the Escherichia coli ATP Synthase* , 1999, The Journal of Biological Chemistry.

[51]  Masasuke Yoshida,et al.  Structures of the thermophilic F1-ATPase ε subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1 , 2007, Proceedings of the National Academy of Sciences.

[52]  M C Wilce,et al.  Structure of the gamma-epsilon complex of ATP synthase. , 2000, Nature structural biology.

[53]  Robert R. Ishmukhametov,et al.  Direct observation of stepped proteolipid ring rotation in E. coli FoF1‐ATP synthase , 2010, The EMBO journal.

[54]  Yigong Shi,et al.  Sampling the conformational space of the catalytic subunit of human γ-secretase , 2015, bioRxiv.

[55]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[56]  John L Rubinstein,et al.  Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM , 2015, bioRxiv.

[57]  B. Cain,et al.  Interaction between Glu-219 and His-245 within the a subunit of F1F0-ATPase in Escherichia coli. , 1988, The Journal of biological chemistry.

[58]  H. Noji,et al.  A rotary molecular motor that can work at near 100% efficiency. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  R. Capaldi,et al.  Electron microscopic evidence of two stalks linking the F1 and F0 parts of the Escherichia coli ATP synthase. , 1998, Biochimica et biophysica acta.

[60]  Özkan Yildiz,et al.  Microscopic rotary mechanism of ion translocation in the F(o) complex of ATP synthases. , 2010, Nature chemical biology.

[61]  Solution Structure, Determined by Nuclear Magnetic Resonance, of the b30-82 Domain of Subunit b of Escherichia coli F1Fo ATP Synthase , 2009, Journal of bacteriology.

[62]  R. Capaldi,et al.  ATP synthase's second stalk comes into focus , 1998, Nature.

[63]  R. H. Fillingame,et al.  Energy-transducing H+-ATPase of Escherichia coli. Reconstitution of proton translocation activity of the intrinsic membrane sector. , 1980, Journal of Biological Chemistry.

[64]  Lawrence K. Lee,et al.  The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase , 2010, Nature Structural &Molecular Biology.

[65]  R. H. Fillingame,et al.  Aqueous access pathways in subunit a of rotary ATP synthase extend to both sides of the membrane , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Sobti,et al.  Rotary ATPases--dynamic molecular machines. , 2014, Current opinion in structural biology.

[67]  S. Howitt,et al.  The Essential Arginine Residue at Position 210 in the a Subunit of the Escherichia coli ATP Synthase Can Be Transferred to Position 252 with Partial Retention of Activity * , 1995, The Journal of Biological Chemistry.

[68]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[69]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[70]  Daniel J. Muller,et al.  The Oligomeric State of c Rings from Cyanobacterial F-ATP Synthases Varies from 13 to 15 , 2007, Journal of bacteriology.

[71]  The "second stalk" of Escherichia coli ATP synthase: structure of the isolated dimerization domain. , 2002, Biochemistry.

[72]  P. Dimroth,et al.  Phospholipids occupy the internal lumen of the c ring of the ATP synthase of Escherichia coli. , 2006, Biochemistry.

[73]  S. Dunn,et al.  Activation of Escherichia coli F1-ATPase by lauryldimethylamine oxide and ethylene glycol: relationship of ATPase activity to the interaction of the epsilon and beta subunits. , 1990, Biochemistry.

[74]  S. Vik,et al.  A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. , 1994, The Journal of biological chemistry.