Assembly and function of RNA silencing complexes

In the RNA-interference pathway, double-stranded RNA induces sequence-specific mRNA degradation through the action of the RNA-induced silencing complex (RISC). Recent work has provided our first glimpses of the RISC-assembly pathway and uncovered the biochemical roles of critical RISC components. These advances have taken our mechanistic understanding of RNA interference to a new level and promise to improve our ability to exploit this biological process for use in experimental biology and medicine.

[1]  M. Oshimura,et al.  Dicer is essential for formation of the heterochromatin structure in vertebrate cells , 2004, Nature Cell Biology.

[2]  A. Fire,et al.  Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[4]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[5]  T. Tuschl,et al.  Mechanisms of gene silencing by double-stranded RNA , 2004, Nature.

[6]  A. Caudy,et al.  A micrococcal nuclease homologue in RNAi effector complexes , 2003, Nature.

[7]  Vivek Mittal,et al.  Improving the efficiency of RNA interference in mammals , 2004, Nature Reviews Genetics.

[8]  E. Sontheimer,et al.  A Dicer-2-Dependent 80S Complex Cleaves Targeted mRNAs during RNAi in Drosophila , 2004, Cell.

[9]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[10]  H. Sigel,et al.  STABILITIES AND STRUCTURES OF METAL ION COMPLEXES OF ADENOSINE 5'-O-THIOMONOPHOSPHATE (AMPS2-) IN COMPARISON WITH THOSE OF ITS PARENT NUCLEOTIDE (AMP2 -) IN AQUEOUS SOLUTION , 1997 .

[11]  Sangdun Choi,et al.  Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy , 2005, Nature Biotechnology.

[12]  S. Hammond,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[13]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[14]  W. Filipowicz,et al.  Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP , 2002, The EMBO journal.

[15]  Phillip D Zamore,et al.  The RNA-Induced Silencing Complex Is a Mg2+-Dependent Endonuclease , 2004, Current Biology.

[16]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature reviews genetics.

[17]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[18]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[19]  A. Caudy,et al.  Argonaute2, a Link Between Genetic and Biochemical Analyses of RNAi , 2001, Science.

[20]  Gregory J. Hannon,et al.  RNAi: A Guide to Gene Silencing , 2003 .

[21]  P. Zamore,et al.  A Protein Sensor for siRNA Asymmetry , 2004, Science.

[22]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[23]  T. Du,et al.  RISC Assembly Defects in the Drosophila RNAi Mutant armitage , 2004, Cell.

[24]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[25]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[26]  A. Djikeng,et al.  An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. , 2003, RNA.

[27]  K. Morris,et al.  Small Interfering RNA-Induced Transcriptional Gene Silencing in Human Cells , 2004, Science.

[28]  P. Zamore,et al.  ATP Requirements and Small Interfering RNA Structure in the RNA Interference Pathway , 2001, Cell.

[29]  Andrew Fire,et al.  The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans , 1999, Cell.

[30]  M. Carmell,et al.  Posttranscriptional Gene Silencing in Plants , 2006 .

[31]  R. Plasterk,et al.  The genetics of RNA silencing. , 2002, Annual review of genetics.

[32]  Ji-Joon Song,et al.  The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes , 2003, Nature Structural Biology.

[33]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[34]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[35]  B. Simon,et al.  Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain , 2003, Nature.

[36]  W. Filipowicz,et al.  Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer , 2004, EMBO reports.

[37]  Phillip D Zamore,et al.  Sequence-Specific Inhibition of Small RNA Function , 2004, PLoS biology.

[38]  Franck Vazquez,et al.  Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. , 2004, Molecular cell.

[39]  J. Erickson,et al.  Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos , 2000, Current Biology.

[40]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[41]  T. Fujisawa,et al.  Analysis of a piwi-Related Gene Implicates Small RNAs in Genome Rearrangement in Tetrahymena , 2002, Cell.

[42]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[43]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[44]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[45]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[46]  Ira M. Hall,et al.  Establishment and Maintenance of a Heterochromatin Domain , 2002, Science.

[47]  M. Siomi,et al.  A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. , 2002, Genes & development.

[48]  R. Martienssen,et al.  The role of RNA interference in heterochromatic silencing , 2004, Nature.

[49]  Anastasia Khvorova,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[50]  T. Sugiyama,et al.  RITS acts in cis to promote RNA interference–mediated transcriptional and post-transcriptional silencing , 2004, Nature Genetics.

[51]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[52]  J. Birchler,et al.  RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. , 2002, Molecular cell.

[53]  岡村 勝友 Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways , 2004 .

[54]  D. Dykxhoorn,et al.  Killing the messenger: short RNAs that silence gene expression , 2003, Nature Reviews Molecular Cell Biology.

[55]  Songtao Jia,et al.  RNAi-Mediated Targeting of Heterochromatin by the RITS Complex , 2004, Science.

[56]  G. Hannon,et al.  RNase III enzymes and the initiation of gene silencing , 2004, Nature Structural &Molecular Biology.

[57]  Shinji Yamaguchi,et al.  RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. , 2002, Genes & development.

[58]  Kaoru Saigo,et al.  Short-Interfering-RNA-Mediated Gene Silencing in Mammalian Cells Requires Dicer and eIF2C Translation Initiation Factors , 2003, Current Biology.

[59]  Michael Q. Zhang,et al.  The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. , 2002, Genes & development.

[60]  Adam M. Gustafson,et al.  Genetic and Functional Diversification of Small RNA Pathways in Plants , 2004, PLoS biology.

[61]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[62]  Phillip D Zamore,et al.  Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. , 2002, Molecular cell.

[63]  C. Mello,et al.  The dsRNA Binding Protein RDE-4 Interacts with RDE-1, DCR-1, and a DExH-Box Helicase to Direct RNAi in C. elegans , 2002, Cell.

[64]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[65]  E. Sontheimer,et al.  Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways , 2004, Cell.

[66]  Xiaodong Wang,et al.  R2D2, a Bridge Between the Initiation and Effector Steps of the Drosophila RNAi Pathway , 2003, Science.

[67]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.

[68]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[69]  Eric Westhof,et al.  Single Processing Center Models for Human Dicer and Bacterial RNase III , 2004, Cell.

[70]  L. Excoffier,et al.  Modern Humans Did Not Admix with Neanderthals during Their Range Expansion into Europe , 2004, PLoS biology.

[71]  T. Tuschl,et al.  Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate , 2001, The EMBO journal.

[72]  G. Macino,et al.  Quelling in Neurospora crassa. , 2002, Advances in genetics.

[73]  Wei Ge,et al.  Synthetic shRNAs as potent RNAi triggers , 2005, Nature Biotechnology.

[74]  A. Caudy,et al.  Fragile X-related protein and VIG associate with the RNA interference machinery. , 2002, Genes & development.

[75]  G. Hannon,et al.  Unlocking the potential of the human genome with RNA interference , 2004, Nature.

[76]  M. Matzke,et al.  Planting the Seeds of a New Paradigm , 2004, PLoS biology.

[77]  Thomas Tuschl,et al.  Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. , 2004, RNA.

[78]  R. Allshire,et al.  Hairpin RNAs and Retrotransposon LTRs Effect RNAi and Chromatin-Based Gene Silencing , 2003, Science.

[79]  Nick V Grishin,et al.  Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Thomas Tuschl,et al.  RISC is a 5' phosphomonoester-producing RNA endonuclease. , 2004, Genes & development.

[81]  D. Zilberman,et al.  RNA Silencing Genes Control de Novo DNA Methylation , 2004, Science.

[82]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[83]  P. Linder,et al.  DEAD-box proteins: the driving forces behind RNA metabolism , 2004, Nature Reviews Molecular Cell Biology.

[84]  Michael Sattler,et al.  Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain , 2004, Nature Structural &Molecular Biology.

[85]  A. Reynolds,et al.  Rational siRNA design for RNA interference , 2004, Nature Biotechnology.

[86]  T. Cech,et al.  The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. , 1993, Biochemistry.

[87]  M. Mann,et al.  miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. , 2002, Genes & development.

[88]  Eric C Lai,et al.  microRNAs: Runts of the Genome Assert Themselves , 2003, Current Biology.

[89]  James A. Birchler,et al.  Heterochromatic Silencing and HP1 Localization in Drosophila Are Dependent on the RNAi Machinery , 2004, Science.

[90]  D. Patel,et al.  Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain , 2004, Nature.

[91]  R. Schultz,et al.  Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. , 2000, Development.

[92]  G. Rubin,et al.  ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos , 2002, Proceedings of the National Academy of Sciences of the United States of America.