Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory

Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming τ neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in ∼ 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an Eν−2 spectrum in the energy range 1.0 × 1017 eV –2.5 × 1019 eV is E2 dNν/dEν < 4.4 × 10−9 GeV cm−2 s−1 sr−1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays.

P. G. Isar | J. M. Figueira | T. D. Grubb | S. Buitink | H. Falcke | P. Sommers | S. Coutu | J. Blazek | P. Buchholz | J. Chudoba | M. Dova | A. Filipčič | L. Nožka | M. Ziolkowski | G. Morlino | S. Stanič | M. Perlin | G. Matthiae | P. Privitera | J. Řídký | R. Shellard | D. Zavrtanik | M. Hrabovsky | T. Hebbeker | G. Snow | S. de Jong | A. Awad | L. Chytka | H. Wahlberg | V. Rizi | G. Salina | C. Hojvat | A. Letessier-Selvon | B. Zimmermann | P. Mantsch | O. Lippmann | L. Anchordoqui | J. Hörandel | J. Johnsen | M. Urban | D. Kuempel | T. Winchen | P. Trávníček | R. Clay | P. Homola | R. Mussa | A. Almela | A. Cerutti | A. Etchegoyen | L. Ferreyro | M. Hampel | D. Harari | M. Platino | M. Stolpovskiy | A. Supanitsky | A. Badescu | H. Mathes | S. Dasso | V. Novotny | M. Giammarchi | L. Miramonti | J. Chinellato | B. Tomé | T. Bretz | H. Asorey | A. Haungs | T. Huege | M. Kleifges | V. Lenok | I. Mitri | H. Gemmeke | L. Villaseñor | L. Wiencke | G. Consolati | S. Petrera | P. Stassi | C. Covault | L. Nellen | J. Rautenberg | A. Zepeda | C. Escobar | G. Guedes | K. Becker | K. Kampert | R. Lang | M. Unger | D. Presti | F. Barbato | P. Tobiška | K. Caballero-Mora | S. Andringa | V. Verzi | G. Golup | F. Salamida | A. Blanco | T. Pierog | O. Scholten | J. Juryšek | V. Pirronello | M. Zavrtanik | I. Allekotte | J. Biteau | J. Ebr | I. Albuquerque | B. Garcia | D. Mandát | C. Morello | D. Nosek | M. Palatka | M. Pech | M. Prouza | P. Ristori | E. Santos | P. Schovánek | D. Veberič | S. Vorobiov | J. Poh | R. Sarmento | R. Prado | R. Pelayo | H. Salazar | C. Aramo | M. Boháčová | F. Feldbusch | A. Nucita | M. Giller | M. Río | D. Heck | P. Biermann | A. Balaceanu | A. Gherghel-Lascu | M. Niculescu-Oglinzanu | A. Saftoiu | D. Stanca | A. Fauth | B. Dawson | M. Schauer | F. Zuccarello | J. Pallotta | J. Carceller | P. Assis | F. Schröder | M. Tueros | H. Schieler | A. Weindl | M. Aglietta | J. Albury | G. A. Anastasi | B. Andrada | G. Avila | R. Luz | J. Bellido | M. Bertaina | X. Bertou | C. Bleve | C. Bonifazi | N. Borodai | A. Botti | J. Brack | A. Bridgeman | F. Briechle | M. Buscemi | L. Caccianiga | L. Calcagni | A. Cancio | F. Canfora | R. Caruso | A. Castellina | F. Catalani | L. Cazon | R. Colalillo | A. Coleman | M. Coluccia | F. Contreras | M. Cooper | B. Daniel | K. Daumiller | G. D. Mauro | J. Debatin | N. Dhital | C. Dobrigkeit | J. D'Olivo | Q. Dorosti | J. Farmer | N. Fazzini | F. Fenu | M. Freire | T. Fujii | A. Fuster | P. Ghia | U. Giaccari | D. Glas | J. Glombitza | I. Goos | A. Gorgi | M. Gottowik | F. Guarino | R. Halliday | P. Hansen | T. Harrison | V. M. Harvey | E. Holt | J. Hulsman | A. Insolia | B. Keilhauer | N. Kemmerich | J. Kemp | H. Klages | J. Kleinfeller | G. K. Mezek | B. Lago | D. LaHurd | R. Legumina | I. Lhenry-Yvon | R. Lorek | Q. Luce | A. Lucero | M. Malacari | G. Marsella | D. Martello | H. Martinez | S. Mathys | J. Matthews | E. Mayotte | P. Mazur | G. Medina-Tanco | A. Menshikov | K. Merenda | S. Michal | M. Micheletti | D. Mockler | S. Mollerach | F. Montanet | M. Muller | M. Niechciol | D. Nitz | P. Papenbreer | G. Parente | A. Parra | F. Pedreira | J. Peña-Rodríguez | L. Pereira | L. Perrone | C. Peters | J. Phuntsok | B. Pont | C. Porowski | A. Puyleart | S. Querchfeld | S. Quinn | R. Ramos-Pollán | D. Ravignani | M. Reininghaus | F. Riehn | M. Risse | J. Rojo | M. Roncoroni | E. Roulet | A. Rovero | P. Ruehl | S. Saffi | E. Santos | F. Sarazin | C. Sarmiento-cano | R. Sato | P. Savina | V. Scherini | M. Schimassek | M. Schimp | D. Schmidt | J. Schumacher | S. Sciutto | G. Sigl | G. Silli | J. F. Soriano | J. Souchard | R. Squartini | J. Stasielak | A. Streich | T. Sudholz | Z. Szadkowski | O. Taborda | M. Trini | I. Valiño | L. Valore | E. Varela | I. D. V. Quispe | M. Wirtz | D. Wittkowski | B. Wundheiler | A. Yushkov | E. Zas | L. Zehrer | D. Boncioli | A. Matteo | A. Taboada | A. Tapia | P. Vitale | I. Mariş | R. Conceição | R. D. de Almeida | V. de Souza | R. Lopez | G. Mancarella | J. Pekala | R. Šmída | T. Suomijärvi | H. Wilczynski | B. V. Cárdenas | A. Aab | A. Kääpä | O. Deligny | F. Sánchez | N. González | A. L. Casado | R. Anjos | A. Mariazzi | J. de Oliveira | L. Núñez | A. Watson | J. P. Gongora | M. R. Hampel | G. Cataldi | M. Mastrodicasa | A. Bakalova | I. Caracas | M. Cerda | A. Condorelli | F. Convenga | J. A. Day | F. Gesualdi | F. Gobbi | E. Guido | B. Manning | J. Manshanden | W. M. Namasaka | M. Pothast | F. Schlüter | S. Schröder | M. Scornavacche | M. Stadelmaier | M. Suarez-Durán | A. Travaini | A. Vásquez-Ramírez | C. Ventura | J. Vink | M. Panetta | M. Pimenta | M. Wiedeński | M. Erdmann | A. M. Berg | S. Baur | A. Olinto | R. Engel | J. Supik | A. Bueno | L. Lopes | D. Melo | M. Roth | C. Timmermans | R. Ulrich | G. Farrar | G. C. Hill | H. Wahlberg | J. S. Gomez | J. Alvarez-Muñiz | C. Bérat | P. Tobiska | P. Bodegom | D. Góra | L. Nozka | P. Horváth | S. Hahn | W. R. de Carvalho | S. Müller | A. Müller | M. Mostafá | P. Abreu | A. Dundović | P. Heimann | A. V. Vliet | J. Vícha | M. Weber | K. Choi | O. Sima | J. A. Castillo | J. D. M. Neto | M. L. D. Castro | M. G. Berisso | M. D. de Oliveira | O. M. Bravo | C. T. Peixoto | G. T. Elipe | J. F. V. Galicia | L. Yang | Hernán Asorey | A. Bakalová | C. Sarmiento-Cano | D. L. Presti | A. Bălăceanu | A. Săftoiu | J. Pȩkala | P. Buchholz | A. Haungs | O. Sima | M. Bertaina | M. Suárez-Durán | J. Chinellato | T. Hebbeker | G. Hill | D. Schmidt | F. Sánchez

[1]  B. Pont A Large Radio Detector at the Pierre Auger Observatory - Measuring the Properties of Cosmic Rays up to the Highest Energies , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[2]  P. G. Isar,et al.  Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory , 2019, 1906.07419.

[3]  M. Muzio,et al.  Progress towards characterizing ultrahigh energy cosmic ray sources , 2019, Physical Review D.

[4]  A. Castellina AugerPrime: the Pierre Auger Observatory Upgrade , 2019, EPJ Web of Conferences.

[5]  J. Beatty,et al.  Constraints on the ultrahigh-energy cosmic neutrino flux from the fourth flight of ANITA , 2019, Physical Review D.

[6]  J. Heinze,et al.  A New View on Auger Data and Cosmogenic Neutrinos in Light of Different Nuclear Disintegration and Air-shower Models , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[7]  J. Horandel,et al.  Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos , 2019, Physical Review D.

[8]  K. Kampert,et al.  On the flux of high-energy cosmogenic neutrinos and the influence of the extragalactic magnetic field , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[9]  K. Kotera,et al.  Cosmogenic photon and neutrino fluxes in the Auger era , 2018, Journal of Cosmology and Astroparticle Physics.

[10]  P. G. Isar,et al.  Large-scale Cosmic-Ray Anisotropies above 4 EeV Measured by the Pierre Auger Observatory , 2018, The Astrophysical Journal.

[11]  William H. Lee,et al.  Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2018, Science.

[12]  I. collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert , 2018, Science.

[13]  T. B. Watson,et al.  Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data , 2018, Physical Review D.

[14]  K. Bechtol,et al.  Constraints on the diffuse high-energy neutrino flux from the third flight of ANITA , 2018, 1803.02719.

[15]  T. Hebbeker,et al.  An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources , 2018, 1801.06160.

[16]  H. Schoorlemmer,et al.  Comprehensive approach to tau-lepton production by high-energy tau neutrinos propagating through the Earth , 2017, 1707.00334.

[17]  S. Mollerach,et al.  Progress in high-energy cosmic ray physics , 2017, 1710.11155.

[18]  J. Alvarez-Muñiz Ultra-high energy neutrinos: status and prospects , 2017 .

[19]  T. Hebbeker,et al.  Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory , 2017, 1710.07249.

[20]  J. Bellido Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above $10^{17.2}$ eV and Composition Implications , 2017 .

[21]  E. Zas Searches for neutrino fluxes in the EeV regime with the Pierre Auger Observatory , 2017 .

[22]  M. Fukushima,et al.  Past, Present and Future of UHECR Observations , 2017, 1703.07897.

[23]  P. Auger Observation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8×1018 eV , 2017 .

[24]  P. G. Isar,et al.  Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: Measurements at Energies above 10 eV , 2017 .

[25]  P. G. Isar,et al.  Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum , 2016, 1609.08567.

[26]  G. Merino,et al.  OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA , 2016, The Astrophysical Journal.

[27]  J. G. Gonzalez,et al.  Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube. , 2016, Physical review letters.

[28]  P. G. Isar,et al.  The Pierre Auger Observatory Upgrade - Preliminary Design Report , 2016, 1604.03637.

[29]  Gero Muller,et al.  CRPropa 3—a public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles , 2016, Journal of Cosmology and Astroparticle Physics.

[30]  K. Murase,et al.  Erratum: Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos [Phys. Rev. D 90, 103005 (2014)] , 2015 .

[31]  E. Waxman The origin of IceCube's neutrinos: Cosmic ray accelerators embedded in star forming calorimeters , 2015, 1511.00815.

[32]  T. Hebbeker,et al.  Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory , 2016 .

[33]  A. F. Grillo,et al.  Cosmogenic neutrinos and ultra-high energy cosmic ray models , 2015, 1505.04020.

[34]  Octavian Fratu,et al.  Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory , 2015, 1504.05397.

[35]  M. D. Mauro,et al.  Composition of the Fermi-LAT isotropic gamma-ray background intensity: Emission from extragalactic point sources and dark matter annihilations , 2015, 1501.05316.

[36]  K. Bechtol,et al.  THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND AND IMPLICATIONS FOR DARK MATTER ANNIHILATION , 2015, 1501.05301.

[37]  A. L. Sampson,et al.  Study of Ultra-High Energy Cosmic Ray composition using Telescope Array’s Middle Drum detector and surface array in hybrid mode , 2014, 1408.1726.

[38]  S. Buitink,et al.  Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10(17.8) eV , 2014 .

[39]  M. C. Maccarone,et al.  Reconstruction of inclined air showers detected with the Pierre Auger Observatory , 2014, 1407.3214.

[40]  T Meures,et al.  Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data , 2014, 1405.5303.

[41]  C. Dermer,et al.  Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence , 2014, 1403.4089.

[42]  K. Murase,et al.  Testing the Newborn Pulsar Origin of Ultrahigh Energy Cosmic Rays with EeV Neutrinos , 2013, 1311.2044.

[43]  D. Hooper,et al.  Cosmic neutrino pevatrons: A brand new pathway to astronomy, astrophysics, and particle physics , 2013, 1312.6587.

[44]  S. Navas The Search for Ultra-High Energy Neutrinos at the Pierre Auger Observatory , 2013 .

[45]  S. Navas Search for ultra-high energy neutrinos at the pierre auger observatory , 2013 .

[46]  A. Ishihara,et al.  Constraints on the origin of the ultrahigh energy cosmic rays using cosmic diffuse neutrino flux limits: An analytical approach , 2012, 1202.3522.

[47]  N. T. Thao,et al.  A search for ultra-high energy neutrinos in highly inclined events at the Pierre Auger Observatory , 2012, 1202.1493.

[48]  K. Kampert,et al.  Measurements of the Cosmic Ray Composition with Air Shower Experiments , 2011, 1201.0018.

[49]  N. T. Thao,et al.  Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory , 2011 .

[50]  M. Ahlers,et al.  The need for a local source of ultrahigh-energy cosmic-ray nuclei , 2011 .

[51]  N. T. Thao,et al.  The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory , 2011, 1111.7122.

[52]  M. Ahlers,et al.  The need for a local source of UHE CR nuclei , 2011, 1107.2055.

[53]  A. Cooper-Sarkar,et al.  The high energy neutrino cross-section in the Standard Model and its uncertainty , 2011, 1106.3723.

[54]  N. T. Thao,et al.  Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory , 2011, 1106.3048.

[55]  B. Baret,et al.  High-energy neutrino astronomy: detection methods and first achievements , 2011, Reports on progress in physics. Physical Society.

[56]  J. Tiffenberg Búsqueda de neutrinos cósmicos ultra energéticos con el observatorio Pierre Auger , 2011 .

[57]  Nicolò Colombo,et al.  Twistor space observables and quasi-amplitudes in 4D higher-spin gravity , 2010, 1012.0813.

[58]  Denis Allard,et al.  Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV , 2010, 1009.1382.

[59]  M. Ahlers,et al.  GZK neutrinos after the Fermi-LAT diffuse photon flux measurement , 2010, 1005.2620.

[60]  S. Andringa,et al.  Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory , 2010 .

[61]  J Schovancova,et al.  Measurement of the depth of maximum of extensive air showers above 10{18} eV. , 2010, Physical review letters.

[62]  T Glanzman,et al.  Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data. , 2010, Physical review letters.

[63]  The Pierre Auger Collaboration Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory , 2010, 1002.1975.

[64]  N. T. Thao,et al.  Trigger and aperture of the surface detector array of the pierre auger observatory , 2010, 1111.6764.

[65]  D. Hooper,et al.  On the heavy chemical composition of the ultra-high energy cosmic rays , 2009, 0910.1842.

[66]  J. A. J. Matthews,et al.  Measurement of the Energy Spectrum of Cosmic Rays above 1018 eV using the Pierre Auger , 2010 .

[67]  D. Allard Propagation of extragalactic ultra-high energy cosmic-ray nuclei : implications for the observed spectrum and composition , 2009, 0906.3156.

[68]  H. Falcke,et al.  Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory , 2009, 0903.3385.

[69]  N. T. Thao,et al.  Observation of the suppression of the flux of cosmic rays above 4 x 10 (19) eV. , 2008, Physical review letters.

[70]  The Pierre Auger Collaboration Observation of the suppression of the flux of cosmic rays above 4x10^19eV , 2008, 0806.4302.

[71]  V. Elewyck,et al.  Ultrahigh energy tau neutrino flux regeneration while skimming the Earth , 2008, 0806.2126.

[72]  W C Brown,et al.  Upper Limit on the Diffuse Flux of Ultrahigh Energy Tau Neutrinos Upper Limit on the Diffuse Flux of Ultrahigh Energy Tau Neutrinos from the Pierre Auger Observatory from the Auger Observatory , 2022 .

[73]  G. Decerprit,et al.  Implications of the cosmic ray spectrum for the mass composition at the highest energies , 2008, 0805.4779.

[74]  J. R. Thomas,et al.  First observation of the Greisen-Zatsepin-Kuzmin suppression. , 2008, Physical review letters.

[75]  C. O. Escobar,et al.  The Surface Detector System of the Pierre Auger Observatory , 2007, 0712.2832.

[76]  D. Fargion 45 3 v 5 1 0 Se p 20 01 Discovering Ultra High Energy Neutrinos by Horizontal and Upward τ Air-Showers : Evidences in Terrestrial Gamma Flashes ? , 2008 .

[77]  The Pierre Auger Collaboration Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory , 2007, 0712.1909.

[78]  D. Seckel,et al.  Neutrinos: the key to ultrahigh energy cosmic rays. , 2005, Physical review letters.

[79]  A. Olinto,et al.  Cosmogenic neutrinos from ultra-high energy nuclei , 2004, astro-ph/0409316.

[80]  D. Hooper,et al.  The Impact of heavy nuclei on the cosmogenic neutrino flux , 2004, astro-ph/0407618.

[81]  O. Botner,et al.  Including systematic uncertainties in confidence interval construction for Poisson statistics , 2002, hep-ex/0202013.

[82]  D. Seckel,et al.  Propagation of muons and taus at high energies , 2000, hep-ph/0012350.

[83]  A. Letessier-Selvon Establishing the GZK cutoff with ultra high energy tau neutrinos , 2000, astro-ph/0009444.

[84]  Alan A. Watson,et al.  Observations and implications of the ultrahigh-energy cosmic rays , 2000 .

[85]  Japan.,et al.  Effects of neutrino mixing on high-energy cosmic neutrino flux , 2000, hep-ph/0005104.

[86]  D. Fargion Discovering Ultra-High-Energy Neutrinos through Horizontal and Upward τ Air Showers: Evidence in Terrestrial Gamma Flashes? , 2000, astro-ph/0002453.

[87]  J. Bahcall,et al.  High-energy neutrinos from astrophysical sources: An Upper bound , 1998, hep-ph/9807282.

[88]  P. G. Isar,et al.  The Pierre Auger Cosmic Ray Observatory , 2015, 1502.01323.

[89]  K. Capelle,et al.  On the detection of ultra high energy neutrinos with the Auger observatory , 1998, astro-ph/9801313.

[90]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[91]  J. Learned,et al.  Detecting Nutau Oscillations as PeV Energies , 1994, hep-ph/9408296.

[92]  R. Lathe Phd by thesis , 1988, Nature.

[93]  G. T. Zatsepin,et al.  Cosmic rays at ultra high energies (neutrino , 1969 .

[94]  David T. Fraebel,et al.  Upper limit of the spectrum of cosmic rays , 1966 .

[95]  K. Greisen End to the cosmic ray spectrum , 1966 .

[96]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[97]  W. C. Brown,et al.  Measurement of the Depth of Maximum of Extensive Air Showers above 1018 eV ( The Pierre Auger Collaboration ) , 2022 .