Neural dynamics in cortex-striatum co-cultures—I. Anatomy and electrophysiology of neuronal cell types

[1]  D. Plenz,et al.  Neural dynamics in cortex-striatum co-cultures—II. Spatiotemporal characteristics of neuronal activity , 1996, Neuroscience.

[2]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[3]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[4]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[6]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[7]  B. D. Bennett,et al.  Characterization of calretinin-immunoreactive structures in the striatum of the rat , 1993, Brain Research.

[8]  K. Østergaard Organotypic slice cultures of the rat striatum—I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decar☐ylase and GABA , 1993, Neuroscience.

[9]  Y. Kawaguchi,et al.  Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. , 1993, Journal of neurophysiology.

[10]  N. Novak,et al.  Formation of Specific Efferent Connections in Organotypic Slice Cultures from Rat Visual Cortex Cocultured with Lateral Geniculate Nucleus and Superior Colliculus , 1993, The European journal of neuroscience.

[11]  J. Tepper,et al.  In vivo studies of the postnatal development of rat neostriatal neurons. , 1993, Progress in brain research.

[12]  H. Kita,et al.  GABAergic circuits of the striatum. , 1993, Progress in brain research.

[13]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[14]  K. Ostergaard Organotypic slice cultures of the rat striatum--I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA. , 1993, Neuroscience.

[15]  G. Percheron,et al.  Cholinergic neurons of the rat and primate striatum are morphologically different. , 1993, Progress in brain research.

[16]  J. Bolz,et al.  Formation and preservation of cortical layers in slice cultures. , 1992, Journal of neurobiology.

[17]  R. Schmidt-Kastner,et al.  Immunohistochemical changes of neuronal calcium-binding proteins parvalbumin and calbindin-D-28k following unilateral deafferentation in the rat visual system , 1992, Experimental Neurology.

[18]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[19]  J. Bolz,et al.  Formation of specific afferent connections in organotypic slice cultures from rat visual cortex cocultured with lateral geniculate nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Y. Kawaguchi,et al.  Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents. , 1992, Journal of neurophysiology.

[21]  A. Parent,et al.  Cortical input to parvalbumin-immunoreactive neurones in the putamen of the squirrel monkey , 1992, Brain Research.

[22]  Charles J. Wilson Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons , 1992 .

[23]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[24]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization , 1992, Trends in Neurosciences.

[25]  H. Kita,et al.  Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons , 1992, Brain Research.

[26]  H. Groenewegen,et al.  Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat , 1992, The Journal of comparative neurology.

[27]  W. Härtig,et al.  Parvalbumin and calbindin immunoreactivity in the rat brain: a double-immunolabelling method. , 1992, Acta histochemica. Supplementband.

[28]  A. Schüz,et al.  Maturation of neurons in neocortical slice cultures: A light and electron microscopic study on in situ and in vitro material. , 1992, Journal fur Hirnforschung.

[29]  H. Scheich,et al.  Parvalbumin and calbindin-D28K immunoreactivity as developmental markers of auditory and vocal motor nuclei of the zebra finch , 1991, Neuroscience.

[30]  A. Hendrickson,et al.  Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat , 1991, Neuroscience.

[31]  A. Parent,et al.  Complementary Distribution of Calbindin D‐28k and Parvalbumin in the Basal Forebrain and Midbrain of the Squirrel Monkey , 1991, The European journal of neuroscience.

[32]  L. Butcher,et al.  Postnatal development of cholinergic neurons in the rat: I. Forebrain , 1991, Brain Research Bulletin.

[33]  R. North,et al.  Membrane properties and synaptic responses of rat striatal neurones in vitro. , 1991, The Journal of physiology.

[34]  S. Klauer The corticotectal projection of the rat established in organotypic culture. , 1991, Neuroreport.

[35]  S. Snyder,et al.  Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Hendrickson,et al.  Development of the calcium‐binding proteins parvalbumin and calbindin in monkey striate cortex , 1991, The Journal of comparative neurology.

[37]  J. Wickens,et al.  Two dynamic modes of striatal function under dopaminergic‐cholinergic control: Simulation and analysis of a model , 1991, Synapse.

[38]  J. Tigges,et al.  Parvalbumin immunoreactivity of the lateral geniculate nucleus in adult rhesus monkeys after monocular eye enucleation , 1991, Visual Neuroscience.

[39]  W. Armstrong,et al.  A biotin-containing compound N-(2-aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: Comparison with biocytin , 1991, Journal of Neuroscience Methods.

[40]  J. Wayne Aldridge,et al.  The temporal structure of spike trains in the primate basal ganglia: afferent regulation of bursting demonstrated with precentral cerebral cortical ablation , 1991, Brain Research.

[41]  D. Prince,et al.  Postnatal maturation of the GABAergic system in rat neocortex. , 1991, Journal of neurophysiology.

[42]  W Zieglgänsberger,et al.  Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. , 1991, Journal of neurophysiology.

[43]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[44]  J. Wickens,et al.  Dopamine D-1 and D-2 receptors in relation to reward and performance: A case for the D-1 receptor as a primary site of therapeutic action of neuroleptic drugs , 1990, Progress in Neurobiology.

[45]  H. Kita,et al.  Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study , 1990, Brain Research.

[46]  Charles J. Wilson,et al.  Parvalbumin‐containing gabaergic interneurons in the rat neostriatum , 1990, The Journal of comparative neurology.

[47]  R. Nitsch,et al.  Proportion of parvalbumin‐positive basket cells in the GABAergic innervation of pyramidal and granule cells of the rat hippocampal formation , 1990, The Journal of comparative neurology.

[48]  Tobias Bonhoeffer,et al.  Formation of target-specific neuronal projections in organotypic slice cultures from rat visual cortex , 1990, Nature.

[49]  M. Delong,et al.  Primate models of movement disorders of basal ganglia origin , 1990, Trends in Neurosciences.

[50]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[51]  D. Prince,et al.  Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features , 1990, The Journal of comparative neurology.

[52]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  G Bernardi,et al.  Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. , 1990, Journal of neurophysiology.

[55]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  C. Marsden,et al.  Cognitive function in Parkinson's disease: From description to theory , 1990, Trends in Neurosciences.

[57]  G Bernardi,et al.  Synaptic and intrinsic control of membrane excitability of neostriatal neurons. II. An in vitro analysis. , 1990, Journal of neurophysiology.

[58]  A. Mcgeorge,et al.  The organization of the projection from the cerebral cortex to the striatum in the rat , 1989, Neuroscience.

[59]  H. Groenewegen,et al.  The distribution and compartmental organization of the cholinergic neurons in nucleus accumbens of the rat , 1989, Neuroscience.

[60]  J. Bolz,et al.  Development of vasoactive intestinal polypeptide (VIP)-containing neurons in organotypic slice cultures from rat visual cortex , 1989, Neuroscience Letters.

[61]  C. Wilson,et al.  Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. , 1989, Journal of neurophysiology.

[62]  G. Palm,et al.  Density of neurons and synapses in the cerebral cortex of the mouse , 1989, The Journal of comparative neurology.

[63]  E G Jones,et al.  Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[64]  T. Hattori,et al.  Tyrosine hydroxylase-like immunoreactive neurons in the striatum of the rat , 1989, Neuroscience Letters.

[65]  J. Bockaert,et al.  A new mechanism for glutamate receptor action: phosphoinositide hydrolysis , 1988, Trends in Neurosciences.

[66]  B. Gähwiler,et al.  Organotypic cultures of neural tissue , 1988, Trends in Neurosciences.

[67]  B. Connors,et al.  Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor‐mediated responses in neocortex of rat and cat. , 1988, The Journal of physiology.

[68]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[69]  M. Armstrong‐James,et al.  Evidence for a specific role for cortical NMDA receptors in slow-wave sleep , 1988, Brain Research.

[70]  H. Kita,et al.  Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations , 1988, Brain Research.

[71]  T Pasik,et al.  GABAergic elements in the neuronal circuits of the monkey neostriatum: A light and electron microscopic immunocytochemical study , 1988, The Journal of comparative neurology.

[72]  D. Prince,et al.  Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. , 1988, Journal of neurophysiology.

[73]  RW Baughman,et al.  The pharmacology of synapses formed by identified corticocollicular neurons in primary cultures of rat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  G. Rebec,et al.  Reciprocal zones of excitation and inhibition in the neostriatum , 1988, Synapse.

[75]  D. McCormick,et al.  Post‐natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. , 1987, The Journal of physiology.

[76]  S. Thanos,et al.  A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. , 1987, Development.

[77]  C.J. Wilson,et al.  Morphology and synaptic connections of crossed corticostriatal neurons in the rat , 1987, The Journal of comparative neurology.

[78]  R. T. Watson,et al.  Efferent Connections of the Rostral Portion of Medial Agranular Cortex in Rats , 1987, Brain Research Bulletin.

[79]  S. Thanos,et al.  Axonal arborization in the developing chick retinotectal system , 1987, The Journal of comparative neurology.

[80]  P. Calabresi,et al.  Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: Evidence for D1 receptor involvement , 1987, Neuroscience.

[81]  W Zieglgänsberger,et al.  Baclofen reduces post‐synaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. , 1987, The Journal of physiology.

[82]  D. Landis,et al.  Morphology of striatal neurons containing VIP‐like immunoreactivity , 1987, The Journal of comparative neurology.

[83]  M. Celio,et al.  Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. , 1986, Science.

[84]  H. Uylings,et al.  Cytoarchitectonic development of the prefrontal cortex in the rat , 1985, The Journal of comparative neurology.

[85]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[86]  J. E. Vaughn,et al.  Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: A correlated light and electron microscopic study of cholinergic neurons and synapses , 1985, The Journal of comparative neurology.

[87]  J. Wu,et al.  Glutamate decarboxylase‐immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry , 1985, The Journal of comparative neurology.

[88]  J. E. Vaughn,et al.  Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: A study of cholinergic neurons and synapses , 1985, The Journal of comparative neurology.

[89]  J. Storm-Mathisen,et al.  Glutamate‐ and GABA‐containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique , 1984, The Journal of comparative neurology.

[90]  A. D. Smith,et al.  Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy , 1984, Neuroscience.

[91]  W. Oertel,et al.  Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems , 1984, Neuroscience Letters.

[92]  T. Kita,et al.  Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation , 1984, Brain Research.

[93]  M. Frotscher,et al.  Identification of projecting neurons in rat neostriatal slices , 1984, Brain Research.

[94]  J. Lehmann,et al.  The striatal cholinergic interneuron: Synaptic target of dopaminergic terminals? , 1983, Neuroscience.

[95]  T. Hökfelt,et al.  NADPH‐diaphorase: A selective histochemical marker for striatal neurons containing both somatostatin‐ and avian pancreatic polypeptide (APP)‐like immunoreactivities , 1983, The Journal of comparative neurology.

[96]  A. Levey,et al.  Distribution of cholinergic neurons in rat brain: Demonstrated by the immunocytochemical localization of choline acetyltransferase , 1983, The Journal of comparative neurology.

[97]  P. Somogyi,et al.  Fine structural studies on a type of somatostatin‐immurioreactive neuron and its synaptic connections in the rat neostriatum: A correlated light and electron microscopic study , 1983, The Journal of comparative neurology.

[98]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[99]  P. Salvaterra,et al.  Interaction of monoclonal antibodies with mammalian choline acetyltransferase. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[100]  H. Thoenen,et al.  Production of specific antisera and monoclonal antibodies to choline acetyltransferase: characterization and use for identification of cholinergic neurons. , 1982, The EMBO journal.

[101]  S. T. Kitai,et al.  Morphological and physiological properties of neostriatal neurons: An intracellular horseradish peroxidase study in the rat , 1982, Neuroscience.

[102]  B. Gähwiler Organotypic monolayer cultures of nervous tissue , 1981, Journal of Neuroscience Methods.

[103]  P. Somogyi,et al.  A second type of striatonigral neuron: a comparison between retrogradely labelled and golgi-stained neurons at the light and electron microscopic levels , 1981, Neuroscience.

[104]  Charles J. Wilson,et al.  Spontaneous firing patterns of identified spiny neurons in the rat neostriatum , 1981, Brain Research.

[105]  J. Donoghue,et al.  A collateral pathway to the neostriatum from corticofugal neurons of the rat sensory‐motor cortex: An intracellular HRP study , 1981, The Journal of comparative neurology.

[106]  S. T. Kitai,et al.  Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. , 1981, Science.

[107]  Y. Katayama,et al.  Electrophysiological evidence favoring intracaudate axon collaterals of GABAergic caudate output neurons in the cat , 1981, Brain Research.

[108]  J. W. Lighthall,et al.  Inhibition in slices of rat neostriatum , 1981, Brain Research.

[109]  P. Somogyi,et al.  Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the golgi‐peroxidase transport‐degeneration procedure , 1981, The Journal of comparative neurology.

[110]  Charles J. Wilson,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase , 1980 .

[111]  Melburn R. Park,et al.  Recurrent inhibition in the rat neostriatum , 1980, Brain Research.

[112]  H. Kimura,et al.  Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. , 1980, Science.

[113]  S. T. Kitai,et al.  Medium spiny neuron projection from the rat striatum: An intracellular horseradish peroxidase study , 1980, Brain Research.

[114]  J. E. Vaughn,et al.  The GABA Neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry , 1979, The Journal of comparative neurology.

[115]  M. Sugimori,et al.  Response properties and electrical constants of caudate nucleus neurons in the cat. , 1978, Journal of neurophysiology.

[116]  S. Wise,et al.  Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex , 1977, The Journal of comparative neurology.

[117]  H. Mclennan,et al.  Mechanisms of excitation and inhibition in the nigrostriatal system , 1977, Brain Research.

[118]  H. Thoenen,et al.  Retrograde axonal transport of125I-tetanus toxin as a too for tracing fiber connections in the central nervous system; connections of the rostral part of the rat neostriatum , 1977, Brain Research.

[119]  W. Brown,et al.  The developing caudate nucleus in the euthyroid and hypothyroid rat , 1977, The Journal of comparative neurology.

[120]  A. L. Leiman,et al.  Anatomical organization of cerebral neocortex in tissue culture. , 1974, Experimental neurology.

[121]  R. Hall,et al.  Organization of motor and somatosensory neocortex in the albino rat , 1974 .

[122]  T. Powell,et al.  The structure of the caudate nucleus of the cat: light and electron microscopy. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[123]  C. Welker Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. , 1971, Brain research.

[124]  T. Powell,et al.  The cortico-striate projection in the monkey. , 1970, Brain : a journal of neurology.

[125]  M. Bornstein,et al.  BIOELECTRIC ACTIVITY OF NEONATAL MOUSE CEREBRAL CORTEX DURING GROWTH AND DIFFERENTIATION IN TISSUE CULTURE. , 1964, Experimental neurology.