Alteration of microglial metabolism and inflammatory profile contributes to neurotoxicity in a hiPSC-derived microglia model of frontotemporal dementia 3

[1]  O. Kann,et al.  Interferon γ: a master cytokine in microglia-mediated neural network dysfunction and neurodegeneration , 2022, Trends in Neurosciences.

[2]  T. Höllt,et al.  Co-expression patterns of microglia markers Iba1, TMEM119 and P2RY12 in Alzheimer's disease , 2021, Neurobiology of Disease.

[3]  Gary D Bader,et al.  The reactome pathway knowledgebase 2022 , 2021, Nucleic Acids Res..

[4]  Nadezhda T. Doncheva,et al.  Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3 , 2021, Stem cell reports.

[5]  A. Barron,et al.  Mitochondrial Regulation of Microglial Immunometabolism in Alzheimer’s Disease , 2021, Frontiers in Immunology.

[6]  Alexander R. Pico,et al.  WikiPathways: connecting communities , 2020, Nucleic Acids Res..

[7]  Ryan J H West,et al.  Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis , 2020, Neurobiology of Disease.

[8]  K. Kuter,et al.  Overview of General and Discriminating Markers of Differential Microglia Phenotypes , 2020, Frontiers in Cellular Neuroscience.

[9]  M. Larsen,et al.  Glutamate-glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia , 2020, Molecular Brain.

[10]  B. MacVicar,et al.  Microglial metabolic flexibility supports immune surveillance of the brain parenchyma , 2020, Nature Communications.

[11]  C. Limatola,et al.  Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response , 2020, Frontiers in Immunology.

[12]  Nadezhda T. Doncheva,et al.  Visualize omics data on networks with Omics Visualizer, a Cytoscape App , 2020, F1000Research.

[13]  A. Ducruet,et al.  IL (Interleukin)-15 Bridges Astrocyte-Microglia Crosstalk and Exacerbates Brain Injury Following Intracerebral Hemorrhage , 2020, Stroke.

[14]  C. Duyckaerts,et al.  Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. , 2019, Brain : a journal of neurology.

[15]  H. Stenmark,et al.  The many functions of ESCRTs , 2019, Nature Reviews Molecular Cell Biology.

[16]  Sung Hoon Baik,et al.  A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease. , 2019, Cell metabolism.

[17]  Geo Pertea,et al.  Transcriptome assembly from long-read RNA-seq alignments with StringTie2 , 2019, Genome Biology.

[18]  A. Viola,et al.  The Metabolic Signature of Macrophage Responses , 2019, Front. Immunol..

[19]  B. Aldana Microglia-Specific Metabolic Changes in Neurodegeneration. , 2019, Journal of molecular biology.

[20]  D. Butterfield,et al.  Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease , 2019, Nature Reviews Neuroscience.

[21]  T. Deierborg,et al.  Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response , 2018, Front. Cell. Neurosci..

[22]  M. Blurton-Jones,et al.  Development and validation of a simplified method to generate human microglia from pluripotent stem cells , 2018, Molecular Neurodegeneration.

[23]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[24]  Jan Gorodkin,et al.  Cytoscape stringApp: Network analysis and visualization of proteomics data , 2018, bioRxiv.

[25]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[26]  Reinhard Lipowsky,et al.  The Conserved ESCRT-III Machinery Participates in the Phagocytosis of Entamoeba histolytica , 2018, Front. Cell. Infect. Microbiol..

[27]  J. Hanson,et al.  Microglia in Alzheimer’s disease , 2018, The Journal of cell biology.

[28]  O. Andreassen,et al.  Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies , 2018, PLoS medicine.

[29]  F. Marques,et al.  Brain interference: Revisiting the role of IFNγ in the central nervous system , 2017, Progress in Neurobiology.

[30]  M. Robinson,et al.  stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage , 2017, Genome Biology.

[31]  M. Z. Cader,et al.  A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response , 2017, Stem cell reports.

[32]  M. Colombo,et al.  Alterations of the Coxiella burnetii Replicative Vacuole Membrane Integrity and Interplay with the Autophagy Pathway , 2017, Front. Cell. Infect. Microbiol..

[33]  Michael D. Cahalan,et al.  iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases , 2017, Neuron.

[34]  Jordan A. Ramilowski,et al.  An atlas of human long non-coding RNAs with accurate 5′ ends , 2017, Nature.

[35]  L. Bolund,et al.  Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B , 2022 .

[36]  Holly E. Holmes,et al.  Early microgliosis precedes neuronal loss and behavioural impairment in mice with a frontotemporal dementia-causing CHMP2B mutation , 2017, Human molecular genetics.

[37]  The Gene Ontology Consortium,et al.  Expansion of the Gene Ontology knowledgebase and resources , 2016, Nucleic Acids Res..

[38]  R. Kahn,et al.  Characterizing primary human microglia: A comparative study with myeloid subsets and culture models , 2016, Glia.

[39]  L. Schaeffer,et al.  A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. , 2016, Human molecular genetics.

[40]  Nan Liu,et al.  IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway , 2016, Scientific Reports.

[41]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[42]  W. Le,et al.  Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases , 2016, Molecular Neurobiology.

[43]  C. McPherson,et al.  Microglial M1/M2 polarization and metabolic states , 2016, British journal of pharmacology.

[44]  E. Mills,et al.  Reprogramming mitochondrial metabolism in macrophages as an anti‐inflammatory signal , 2016, European journal of immunology.

[45]  M. Iruretagoyena,et al.  Opposing Roles of Interferon-Gamma on Cells of the Central Nervous System in Autoimmune Neuroinflammation , 2015, Front. Immunol..

[46]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[47]  J. Collinge,et al.  Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology , 2015, Acta Neuropathologica.

[48]  O. Garaschuk,et al.  Neuroinflammation in Alzheimer's disease , 2015, The Lancet Neurology.

[49]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[50]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[51]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[52]  Z. Tümer,et al.  Transient p53 Suppression Increases Reprogramming of Human Fibroblasts without Affecting Apoptosis and DNA Damage , 2014, Stem cell reports.

[53]  Teng Jiang,et al.  Microglia in Alzheimer's Disease , 2014, BioMed research international.

[54]  Alexander Gerhard,et al.  Frontotemporal dementia and its subtypes: a genome-wide association study , 2014, The Lancet Neurology.

[55]  K. Biber,et al.  What is microglia neurotoxicity (Not)? , 2014, Glia.

[56]  M. Palmgren,et al.  Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders , 2014, Front. Mol. Neurosci..

[57]  E. Kremmer,et al.  Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis , 2014, Acta Neuropathologica.

[58]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[59]  B. van Wilgenburg,et al.  Efficient, Long Term Production of Monocyte-Derived Macrophages from Human Pluripotent Stem Cells under Partly-Defined and Fully-Defined Conditions , 2013, PloS one.

[60]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[61]  Liang Zheng,et al.  Succinate is an inflammatory signal that induces IL-1β through HIF-1α , 2013, Nature.

[62]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[63]  F. J. Livesey,et al.  Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks , 2012, Nature Protocols.

[64]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[65]  Katherine R. Smith,et al.  Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. , 2012, American journal of human genetics.

[66]  R. Guerreiro,et al.  Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis , 2012, Human molecular genetics.

[67]  J. Collinge,et al.  Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. , 2012, Brain : a journal of neurology.

[68]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[69]  Yasuko Matsumura,et al.  A more efficient method to generate integration-free human iPS cells , 2011, Nature Methods.

[70]  W. Robberecht,et al.  Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease , 2011, The Lancet Neurology.

[71]  C. van Broeckhoven,et al.  Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations , 2010, Human molecular genetics.

[72]  M. Goldberg,et al.  Neuroinflammation in Parkinson's disease: Its role in neuronal death and implications for therapeutic intervention , 2010, Neurobiology of Disease.

[73]  M. Pool,et al.  NeuriteTracer: A novel ImageJ plugin for automated quantification of neurite outgrowth , 2008, Journal of Neuroscience Methods.

[74]  N. Mitsuma,et al.  Production of interferon-γ by microglia , 2006 .

[75]  Holger Hummerich,et al.  Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia , 2005, Nature Genetics.

[76]  C. Hughes,et al.  Of Mice and Not Men: Differences between Mouse and Human Immunology , 2004, The Journal of Immunology.

[77]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[78]  P. Riederer,et al.  Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells , 2003, Experimental Brain Research.

[79]  J. Brown,et al.  Chromosome 3-linked frontotemporal dementia , 1998, Cellular and Molecular Life Sciences CMLS.

[80]  Martin A. Nowak,et al.  Evolution of genetic redundancy , 1997, Nature.

[81]  K. Yamanaka,et al.  [Neuroinflammation in amyotrophic lateral sclerosis]. , 2014, Rinsho shinkeigaku = Clinical neurology.

[82]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[83]  N. Mitsuma,et al.  Production of interferon-gamma by microglia. , 2006, Multiple sclerosis.

[84]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[85]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[86]  Klaus Biemann,et al.  Mass spectrometry : organic chemical applications , 1962 .