Handbook of Finite Fields
暂无分享,去创建一个
[1] Erich Kaltofen,et al. Deterministic Irreducibility Testing of Polynomials over Large Finite Fields , 1987, J. Symb. Comput..
[2] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[3] Grégoire Lecerf,et al. Improved dense multivariate polynomial factorization algorithms , 2007, J. Symb. Comput..
[4] Y. Ihara,et al. Some remarks on the number of rational points of algebratic curves over finite fields , 1982 .
[5] Harald Niederreiter,et al. Algebraic Geometry in Coding Theory and Cryptography , 2009 .
[6] Fatima K. Abu Salem. An efficient sparse adaptation of the polytope method over I and a record-high binary bivariate factorisation , 2008, J. Symb. Comput..
[7] Jean-Pierre Serre,et al. Nombres de points des courbes algébriques sur F ... , 1983 .
[8] John F. Canny,et al. Factoring Rational Polynomials Over the Complex Numbers , 1993, SIAM J. Comput..
[9] G. Chèze. Des méthodes symboliques-numériques et exactes pour la factorisation absolue des polynômes en deux variables , 2004 .
[10] W. Fulton. Algebraic curves , 1969 .
[11] M. V. Hoeij. Factoring Polynomials and the Knapsack Problem , 2002 .
[12] Éric Schost,et al. Complexity issues in bivariate polynomial factorization , 2004, ISSAC '04.
[13] Erich Kaltofen,et al. Dagwood: a system for manipulating polynomials given by straight-line programs , 1988, TOMS.
[14] Michael B. Monagan,et al. Polynomial Division Using Dynamic Arrays, Heaps, and Packed Exponent Vectors , 2007, CASC.
[15] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[16] Erich Kaltofen,et al. Computing with Polynomials Given By Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators , 1990, J. Symb. Comput..
[17] R. Schoof,et al. Algebraic curves over F2 with many rational points , 1992 .
[18] Laurent Bernardin. On Square-Free Factorization of Multivariate Polynomials over a Finite Field , 1997, Theor. Comput. Sci..
[19] Wim Ruitenburg,et al. A Course in Constructive Algebra , 1987 .
[20] Arjen K. Lenstra. Factoring Multivariate Polynomials over Finite Fields , 1985, J. Comput. Syst. Sci..
[21] J. Gathen. Hensel and Newton methods in valuation rings , 1984 .
[22] Joachim von zur Gathen,et al. The computational complexity of recognizing permutation functions , 1994, STOC '94.
[23] Shuhong Gao,et al. Factoring multivariate polynomials via partial differential equations , 2003, Math. Comput..
[24] Tateaki Sasaki,et al. A unified method for multivariate polynomial factorizations , 1993 .
[25] Erich Kaltofen,et al. Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..
[26] Paul S. Wang. An improved multivariate polynomial factoring algorithm , 1978 .
[27] Erich Kaltofen,et al. Polynomial Factorization 1987-1991 , 1992, LATIN.
[28] Paul S. Wang,et al. Factoring multivariate polynomials over the integers , 1973, SIGS.
[29] Villa Salvador,et al. Topics in the Theory of Algebraic Function Fields , 2006 .
[30] Christian Maire,et al. A Note on Tamely Ramified Towers of Global Function Fields , 2002 .
[31] Erich Kaltofen,et al. Polynomial factorization: a success story , 2003, ISSAC '03.
[32] Joris van der Hoeven,et al. On the bit-complexity of sparse polynomial and series multiplication , 2013, J. Symb. Comput..
[33] Fatima K. Abu Salem,et al. Factoring polynomials via polytopes , 2004, ISSAC '04.
[34] Russell Impagliazzo,et al. Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.
[35] Tateaki Sasaki,et al. Approximate factorization of multivariate polynomials and absolute irreducibility testing , 1991 .
[36] H. Lenstra. Finding small degree factors of lacunary polynomials , 1999 .
[37] H. Zassenhaus. On Hensel factorization, I , 1969 .
[38] J. Tate. Endomorphisms of abelian varieties over finite fields , 1966 .
[39] Erich Kaltofen,et al. On the complexity of factoring bivariate supersparse (Lacunary) polynomials , 2005, ISSAC.
[40] N. Elkies. Explicit Towers of Drinfeld Modular Curves , 2000, math/0005140.
[41] Erich Kaltofen,et al. Effective Noether irreducibility forms and applications , 1991, STOC '91.
[42] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[43] David A. Plaisted,et al. New NP-hard and NP-complete polynomial and integer divisibility problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[44] Henning Stichtenoth. Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .
[45] H. Stichtenoth,et al. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .
[46] D. Hilbert. Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten. , 1892 .
[47] Henning Stichtenoth,et al. An explicit tower of function fields over cubic finite fields and Zink’s lower bound , 2005 .
[48] Kristin E. Lauter,et al. Improved upper bounds for the number of points on curves over finite fields , 2002, math/0207101.
[49] Erich Kaltofen,et al. Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..
[50] Michael B. Monagan,et al. Sparse polynomial multiplication and division in Maple 14 , 2011, ACCA.
[51] Erich Kaltofen,et al. Uniform closure properties of P-computable functions , 1986, STOC '86.
[52] Erich Kaltofen,et al. Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.
[53] Patrizia M. Gianni,et al. Square-free algorithms in positive characteristic , 2005, Applicable Algebra in Engineering, Communication and Computing.
[54] Michael B. Monagan,et al. Efficient Multivariate Factorization over Finite Fields , 1997, AAECC.
[55] Jens Peter Pedersen,et al. Automorphism groups of Ree type Deligne-Lusztig curves and function fields. , 1993 .
[56] Henning Stichtenoth,et al. Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.
[57] Jérémy Berthomieu,et al. Convex-dense Bivariate Polynomial Factorization , 2010 .
[58] Neeraj Kayal. Recognizing permutation functions in polynomial time , 2005, Electron. Colloquium Comput. Complex..
[59] Fernando Torres,et al. On maximal curves in characteristic two , 1998 .
[60] Erich Kaltofen,et al. A polynomial-time reduction from bivariate to univariate integral polynomial factorization , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[61] Gábor Korchmáros,et al. A new family of maximal curves over a finite field , 2007, 0711.0445.
[62] Erich Kaltofen,et al. Effective Hilbert Irreducibility , 1984, Inf. Control..
[63] Noam D. Elkies,et al. Explicit Modular Towers , 2001, math/0103107.
[64] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[65] Erich Kaltofen,et al. Deterministic distinct-degree factorization of polynomials over finite fields , 2004, J. Symb. Comput..
[66] Laurent Bernardin. On bivariate Hensel lifting and its parallelization , 1997 .
[67] Ferruh Özbudak,et al. Subfields of the function field of the Deligne–Lusztig curve of Ree type , 2004 .
[68] Dino J. Lorenzini. An Invitation to Arithmetic Geometry , 1996 .
[69] Torsten Wedhorn,et al. Algebraic Geometry I , 2010 .
[70] R. Tennant. Algebra , 1941, Nature.
[71] S. Vladut,et al. Number of points of an algebraic curve , 1983 .
[72] Michael B. Monagan,et al. Parallel sparse polynomial multiplication using heaps , 2009, ISSAC '09.
[73] Grégoire Lecerf,et al. Sharp precision in Hensel lifting for bivariate polynomial factorization , 2006, Math. Comput..
[74] Everett W. Howe,et al. Curves of every genus with many points, II: Asymptotically good families , 2002, Duke Mathematical Journal.
[75] Th. Zink,et al. Degeneration of Shimura surfaces and a problem in coding theory , 1985, FCT.
[76] Kazuhiro Yokoyama,et al. Yet another practical implementation of polynomial factorization over finite fields , 2002, ISSAC '02.
[77] H. Niederreiter,et al. Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .
[78] J. Voloch,et al. Weierstrass Points and Curves Over Finite Fields , 1986 .
[79] H. Stichtenoth,et al. On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .
[80] Kazuya Kato,et al. Number Theory 1 , 1999 .
[81] Thomas Yan,et al. The Geobucket Data Structure for Polynomials , 1998, J. Symb. Comput..
[82] Erich Kaltofen. Sparse Hensel Lifting , 1985, European Conference on Computer Algebra.
[83] Keith O. Geddes,et al. Algorithms for computer algebra , 1992 .
[84] Henning Stichtenoth,et al. On tame towers over finite fields , 2003 .
[85] Iwan Duursma,et al. On lower bounds for the Ihara constants $A(2)$ and $A(3)$ , 2011, Compositio Mathematica.
[86] Christophe Ritzenthaler,et al. Optimal curves of genus 1,2 and 3 , 2011, 1101.5871.
[87] S. Kleiman. Bertini and his two fundamental theorems , 1997, alg-geom/9704018.
[88] Richard Zippel. Newton's iteration and the sparse Hensel algorithm (Extended Abstract) , 1981, SYMSAC '81.
[89] Shuhong Gao,et al. Hensel lifting and bivariate polynomial factorisation over finite fields , 2002, Math. Comput..
[90] Grégoire Lecerf,et al. Lifting and recombination techniques for absolute factorization , 2007, J. Complex..
[91] Michael E. Pohst,et al. Factoring polynomials over global fields I , 2005, J. Symb. Comput..
[92] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[93] David M Goldschmidt,et al. Algebraic Functions and Projective Curves , 2002 .
[94] Adi Shamir,et al. Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization , 1999, CRYPTO.
[95] Stephen C. Johnson,et al. Sparse polynomial arithmetic , 1974, SIGS.
[96] Andrzej Schinzel,et al. Polynomials with Special Regard to Reducibility , 2000 .
[97] Tateaki Sasaki,et al. Analysis of approximate factorization algorithm I , 1992 .
[98] Marcel van der Vlugt,et al. An asymptotically good tower of curves over the field with eight elements , 2001 .
[99] A. M. Ostrowski. On the significance of the theory of convex polyhedra for formal algebra , 1999, SIGS.
[100] I. Shafarevich. Basic algebraic geometry , 1974 .
[101] Henning Stichtenoth,et al. A characterization of Hermitian function fields over finite fields. , 1994 .
[102] Erich Kaltofen,et al. A polynomial reduction from multivariate to bivariate integral polynomial factorization. , 1982, STOC '82.
[103] Erich Kaltofen,et al. Finding small degree factors of multivariate supersparse (lacunary) polynomials over algebraic number fields , 2006, ISSAC '06.
[104] Marcel van der Vlugt,et al. Tables of curves with many points , 2000, Math. Comput..
[105] Erich Kaltofen,et al. FOXBOX: a system for manipulating symbolic objects in black box representation , 1998, ISSAC '98.
[106] James H. Davenport,et al. Factorization over finitely generated fields , 1981, SYMSAC '81.
[107] Grégoire Lecerf,et al. New recombination algorithms for bivariate polynomial factorization based on Hensel lifting , 2010, Applicable Algebra in Engineering, Communication and Computing.
[108] Shuhong Gao. Absolute Irreducibility of Polynomials via Newton Polytopes , 2001 .
[109] Joos Heintz,et al. Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.
[110] Erich Kaltofen,et al. Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..
[111] Joachim von zur Gathen,et al. Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..
[112] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[113] T. Willmore. Algebraic Geometry , 1973, Nature.
[114] J. Serre. Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini , 2003 .
[115] Fernando Torres,et al. On Maximal Curves , 1996 .
[116] Erich Kaltofen,et al. Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[117] W. M. Ruppert. Reducibility of Polynomialsf(x, y) Modulo p , 1998, math/9808021.
[118] Anthony Joseph,et al. First European Congress of Mathematics , 1994 .
[119] Erich Kaltofen,et al. On the complexity of computing determinants , 2001, computational complexity.
[120] C. Xing,et al. On Subfields of the Hermitian Function Field , 2000, Compositio Mathematica.
[121] Gerhard Frey,et al. On the different of abelian extensions of global fields , 1992 .
[122] Henning Stichtenoth,et al. On the galois closure of towers , 2007 .
[123] Miles Reid,et al. Varieties in projective space , 2013 .
[124] Yvon Siret,et al. Calcul formel : systemes et algorithmes de manipulations algebriques , 1986 .
[125] Allan K. Steel,et al. Conquering inseparability: Primary decomposition and multivariate factorization over algebraic function fields of positive characteristic , 2005, J. Symb. Comput..
[126] David R. Musser,et al. Multivariate Polynomial Factorization , 1975, JACM.
[127] F. Torres,et al. Algebraic Curves over Finite Fields , 1991 .
[128] J. von zur Gathen. Factoring sparse multivariate polynomials , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[129] Fernando Torres,et al. The genus of curves over finite fields with many rational points , 1996 .
[130] Wolfgang Ruppert,et al. Reduzibilität ebener Kurven. , 1986 .
[131] Arjen K. Lenstra,et al. Factoring multivariate polynomials over finite fields , 1983, J. Comput. Syst. Sci..
[132] Peter Beelen,et al. Asymptotically good towers and differential equations , 2004, Compositio Mathematica.
[133] Grégoire Lecerf,et al. Fast separable factorization and applications , 2008, Applicable Algebra in Engineering, Communication and Computing.
[134] Gábor Korchmáros,et al. Quotient curves of the Suzuki curve , 2006 .
[135] M. Tsfasman,et al. Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .