Handbook of Finite Fields

Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and each chapter is self contained and peer reviewed. The first part of the book traces the history of finite fields through the eighteenth and nineteenth centuries. The second part presents theoretical properties of finite fields, covering polynomials, special functions, sequences, algorithms, curves, and related computational aspects. The final part describes various mathematical and practical applications of finite fields in combinatorics, algebraic coding theory, cryptographic systems, biology, quantum information theory, engineering, and other areas. The book provides a comprehensive index and easy access to over 3,000 references, enabling you to quickly locate up-to-date facts and results regarding finite fields.

[1]  Erich Kaltofen,et al.  Deterministic Irreducibility Testing of Polynomials over Large Finite Fields , 1987, J. Symb. Comput..

[2]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[3]  Grégoire Lecerf,et al.  Improved dense multivariate polynomial factorization algorithms , 2007, J. Symb. Comput..

[4]  Y. Ihara,et al.  Some remarks on the number of rational points of algebratic curves over finite fields , 1982 .

[5]  Harald Niederreiter,et al.  Algebraic Geometry in Coding Theory and Cryptography , 2009 .

[6]  Fatima K. Abu Salem An efficient sparse adaptation of the polytope method over I and a record-high binary bivariate factorisation , 2008, J. Symb. Comput..

[7]  Jean-Pierre Serre,et al.  Nombres de points des courbes algébriques sur F ... , 1983 .

[8]  John F. Canny,et al.  Factoring Rational Polynomials Over the Complex Numbers , 1993, SIAM J. Comput..

[9]  G. Chèze Des méthodes symboliques-numériques et exactes pour la factorisation absolue des polynômes en deux variables , 2004 .

[10]  W. Fulton Algebraic curves , 1969 .

[11]  M. V. Hoeij Factoring Polynomials and the Knapsack Problem , 2002 .

[12]  Éric Schost,et al.  Complexity issues in bivariate polynomial factorization , 2004, ISSAC '04.

[13]  Erich Kaltofen,et al.  Dagwood: a system for manipulating polynomials given by straight-line programs , 1988, TOMS.

[14]  Michael B. Monagan,et al.  Polynomial Division Using Dynamic Arrays, Heaps, and Packed Exponent Vectors , 2007, CASC.

[15]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[16]  Erich Kaltofen,et al.  Computing with Polynomials Given By Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators , 1990, J. Symb. Comput..

[17]  R. Schoof,et al.  Algebraic curves over F2 with many rational points , 1992 .

[18]  Laurent Bernardin On Square-Free Factorization of Multivariate Polynomials over a Finite Field , 1997, Theor. Comput. Sci..

[19]  Wim Ruitenburg,et al.  A Course in Constructive Algebra , 1987 .

[20]  Arjen K. Lenstra Factoring Multivariate Polynomials over Finite Fields , 1985, J. Comput. Syst. Sci..

[21]  J. Gathen Hensel and Newton methods in valuation rings , 1984 .

[22]  Joachim von zur Gathen,et al.  The computational complexity of recognizing permutation functions , 1994, STOC '94.

[23]  Shuhong Gao,et al.  Factoring multivariate polynomials via partial differential equations , 2003, Math. Comput..

[24]  Tateaki Sasaki,et al.  A unified method for multivariate polynomial factorizations , 1993 .

[25]  Erich Kaltofen,et al.  Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..

[26]  Paul S. Wang An improved multivariate polynomial factoring algorithm , 1978 .

[27]  Erich Kaltofen,et al.  Polynomial Factorization 1987-1991 , 1992, LATIN.

[28]  Paul S. Wang,et al.  Factoring multivariate polynomials over the integers , 1973, SIGS.

[29]  Villa Salvador,et al.  Topics in the Theory of Algebraic Function Fields , 2006 .

[30]  Christian Maire,et al.  A Note on Tamely Ramified Towers of Global Function Fields , 2002 .

[31]  Erich Kaltofen,et al.  Polynomial factorization: a success story , 2003, ISSAC '03.

[32]  Joris van der Hoeven,et al.  On the bit-complexity of sparse polynomial and series multiplication , 2013, J. Symb. Comput..

[33]  Fatima K. Abu Salem,et al.  Factoring polynomials via polytopes , 2004, ISSAC '04.

[34]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[35]  Tateaki Sasaki,et al.  Approximate factorization of multivariate polynomials and absolute irreducibility testing , 1991 .

[36]  H. Lenstra Finding small degree factors of lacunary polynomials , 1999 .

[37]  H. Zassenhaus On Hensel factorization, I , 1969 .

[38]  J. Tate Endomorphisms of abelian varieties over finite fields , 1966 .

[39]  Erich Kaltofen,et al.  On the complexity of factoring bivariate supersparse (Lacunary) polynomials , 2005, ISSAC.

[40]  N. Elkies Explicit Towers of Drinfeld Modular Curves , 2000, math/0005140.

[41]  Erich Kaltofen,et al.  Effective Noether irreducibility forms and applications , 1991, STOC '91.

[42]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[43]  David A. Plaisted,et al.  New NP-hard and NP-complete polynomial and integer divisibility problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[44]  Henning Stichtenoth Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .

[45]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[46]  D. Hilbert Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten. , 1892 .

[47]  Henning Stichtenoth,et al.  An explicit tower of function fields over cubic finite fields and Zink’s lower bound , 2005 .

[48]  Kristin E. Lauter,et al.  Improved upper bounds for the number of points on curves over finite fields , 2002, math/0207101.

[49]  Erich Kaltofen,et al.  Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..

[50]  Michael B. Monagan,et al.  Sparse polynomial multiplication and division in Maple 14 , 2011, ACCA.

[51]  Erich Kaltofen,et al.  Uniform closure properties of P-computable functions , 1986, STOC '86.

[52]  Erich Kaltofen,et al.  Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.

[53]  Patrizia M. Gianni,et al.  Square-free algorithms in positive characteristic , 2005, Applicable Algebra in Engineering, Communication and Computing.

[54]  Michael B. Monagan,et al.  Efficient Multivariate Factorization over Finite Fields , 1997, AAECC.

[55]  Jens Peter Pedersen,et al.  Automorphism groups of Ree type Deligne-Lusztig curves and function fields. , 1993 .

[56]  Henning Stichtenoth,et al.  Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.

[57]  Jérémy Berthomieu,et al.  Convex-dense Bivariate Polynomial Factorization , 2010 .

[58]  Neeraj Kayal Recognizing permutation functions in polynomial time , 2005, Electron. Colloquium Comput. Complex..

[59]  Fernando Torres,et al.  On maximal curves in characteristic two , 1998 .

[60]  Erich Kaltofen,et al.  A polynomial-time reduction from bivariate to univariate integral polynomial factorization , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[61]  Gábor Korchmáros,et al.  A new family of maximal curves over a finite field , 2007, 0711.0445.

[62]  Erich Kaltofen,et al.  Effective Hilbert Irreducibility , 1984, Inf. Control..

[63]  Noam D. Elkies,et al.  Explicit Modular Towers , 2001, math/0103107.

[64]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[65]  Erich Kaltofen,et al.  Deterministic distinct-degree factorization of polynomials over finite fields , 2004, J. Symb. Comput..

[66]  Laurent Bernardin On bivariate Hensel lifting and its parallelization , 1997 .

[67]  Ferruh Özbudak,et al.  Subfields of the function field of the Deligne–Lusztig curve of Ree type , 2004 .

[68]  Dino J. Lorenzini An Invitation to Arithmetic Geometry , 1996 .

[69]  Torsten Wedhorn,et al.  Algebraic Geometry I , 2010 .

[70]  R. Tennant Algebra , 1941, Nature.

[71]  S. Vladut,et al.  Number of points of an algebraic curve , 1983 .

[72]  Michael B. Monagan,et al.  Parallel sparse polynomial multiplication using heaps , 2009, ISSAC '09.

[73]  Grégoire Lecerf,et al.  Sharp precision in Hensel lifting for bivariate polynomial factorization , 2006, Math. Comput..

[74]  Everett W. Howe,et al.  Curves of every genus with many points, II: Asymptotically good families , 2002, Duke Mathematical Journal.

[75]  Th. Zink,et al.  Degeneration of Shimura surfaces and a problem in coding theory , 1985, FCT.

[76]  Kazuhiro Yokoyama,et al.  Yet another practical implementation of polynomial factorization over finite fields , 2002, ISSAC '02.

[77]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[78]  J. Voloch,et al.  Weierstrass Points and Curves Over Finite Fields , 1986 .

[79]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[80]  Kazuya Kato,et al.  Number Theory 1 , 1999 .

[81]  Thomas Yan,et al.  The Geobucket Data Structure for Polynomials , 1998, J. Symb. Comput..

[82]  Erich Kaltofen Sparse Hensel Lifting , 1985, European Conference on Computer Algebra.

[83]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[84]  Henning Stichtenoth,et al.  On tame towers over finite fields , 2003 .

[85]  Iwan Duursma,et al.  On lower bounds for the Ihara constants $A(2)$ and $A(3)$ , 2011, Compositio Mathematica.

[86]  Christophe Ritzenthaler,et al.  Optimal curves of genus 1,2 and 3 , 2011, 1101.5871.

[87]  S. Kleiman Bertini and his two fundamental theorems , 1997, alg-geom/9704018.

[88]  Richard Zippel Newton's iteration and the sparse Hensel algorithm (Extended Abstract) , 1981, SYMSAC '81.

[89]  Shuhong Gao,et al.  Hensel lifting and bivariate polynomial factorisation over finite fields , 2002, Math. Comput..

[90]  Grégoire Lecerf,et al.  Lifting and recombination techniques for absolute factorization , 2007, J. Complex..

[91]  Michael E. Pohst,et al.  Factoring polynomials over global fields I , 2005, J. Symb. Comput..

[92]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[93]  David M Goldschmidt,et al.  Algebraic Functions and Projective Curves , 2002 .

[94]  Adi Shamir,et al.  Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization , 1999, CRYPTO.

[95]  Stephen C. Johnson,et al.  Sparse polynomial arithmetic , 1974, SIGS.

[96]  Andrzej Schinzel,et al.  Polynomials with Special Regard to Reducibility , 2000 .

[97]  Tateaki Sasaki,et al.  Analysis of approximate factorization algorithm I , 1992 .

[98]  Marcel van der Vlugt,et al.  An asymptotically good tower of curves over the field with eight elements , 2001 .

[99]  A. M. Ostrowski On the significance of the theory of convex polyhedra for formal algebra , 1999, SIGS.

[100]  I. Shafarevich Basic algebraic geometry , 1974 .

[101]  Henning Stichtenoth,et al.  A characterization of Hermitian function fields over finite fields. , 1994 .

[102]  Erich Kaltofen,et al.  A polynomial reduction from multivariate to bivariate integral polynomial factorization. , 1982, STOC '82.

[103]  Erich Kaltofen,et al.  Finding small degree factors of multivariate supersparse (lacunary) polynomials over algebraic number fields , 2006, ISSAC '06.

[104]  Marcel van der Vlugt,et al.  Tables of curves with many points , 2000, Math. Comput..

[105]  Erich Kaltofen,et al.  FOXBOX: a system for manipulating symbolic objects in black box representation , 1998, ISSAC '98.

[106]  James H. Davenport,et al.  Factorization over finitely generated fields , 1981, SYMSAC '81.

[107]  Grégoire Lecerf,et al.  New recombination algorithms for bivariate polynomial factorization based on Hensel lifting , 2010, Applicable Algebra in Engineering, Communication and Computing.

[108]  Shuhong Gao Absolute Irreducibility of Polynomials via Newton Polytopes , 2001 .

[109]  Joos Heintz,et al.  Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.

[110]  Erich Kaltofen,et al.  Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..

[111]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[112]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[113]  T. Willmore Algebraic Geometry , 1973, Nature.

[114]  J. Serre Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini , 2003 .

[115]  Fernando Torres,et al.  On Maximal Curves , 1996 .

[116]  Erich Kaltofen,et al.  Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[117]  W. M. Ruppert Reducibility of Polynomialsf(x, y) Modulo p , 1998, math/9808021.

[118]  Anthony Joseph,et al.  First European Congress of Mathematics , 1994 .

[119]  Erich Kaltofen,et al.  On the complexity of computing determinants , 2001, computational complexity.

[120]  C. Xing,et al.  On Subfields of the Hermitian Function Field , 2000, Compositio Mathematica.

[121]  Gerhard Frey,et al.  On the different of abelian extensions of global fields , 1992 .

[122]  Henning Stichtenoth,et al.  On the galois closure of towers , 2007 .

[123]  Miles Reid,et al.  Varieties in projective space , 2013 .

[124]  Yvon Siret,et al.  Calcul formel : systemes et algorithmes de manipulations algebriques , 1986 .

[125]  Allan K. Steel,et al.  Conquering inseparability: Primary decomposition and multivariate factorization over algebraic function fields of positive characteristic , 2005, J. Symb. Comput..

[126]  David R. Musser,et al.  Multivariate Polynomial Factorization , 1975, JACM.

[127]  F. Torres,et al.  Algebraic Curves over Finite Fields , 1991 .

[128]  J. von zur Gathen Factoring sparse multivariate polynomials , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[129]  Fernando Torres,et al.  The genus of curves over finite fields with many rational points , 1996 .

[130]  Wolfgang Ruppert,et al.  Reduzibilität ebener Kurven. , 1986 .

[131]  Arjen K. Lenstra,et al.  Factoring multivariate polynomials over finite fields , 1983, J. Comput. Syst. Sci..

[132]  Peter Beelen,et al.  Asymptotically good towers and differential equations , 2004, Compositio Mathematica.

[133]  Grégoire Lecerf,et al.  Fast separable factorization and applications , 2008, Applicable Algebra in Engineering, Communication and Computing.

[134]  Gábor Korchmáros,et al.  Quotient curves of the Suzuki curve , 2006 .

[135]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .