Ac‐L‐Ala‐Aib‐L‐Ala‐OMe: X‐Ray Analysis of a Distorted β‐Bend and Magnetic Nonequivalence of Aib‐Methyl Groups

Ac-L-Ala-L-Ala-OMe (1) crystallizes in the space group P21 with a = 10.796(2), b = 10.788(3), c = 14.625(6) A, β = 92.74(3)°, and Z = 4 (R value for 1590 independent reflexions 0.05). In contrast to comparable Aib oligopeptides the two independent tripeptide molecules 1 in the asymmetric unit form very distorted β-turns. The 41 intramolecular hydrogen bridges are extremely weak (3.34 and 3.67 A, respectively) in the solid state. This widening of the β-turn seems to result from strong intermolecular hydrogen bonds (2.94 and 2.85 A) linking the two independent molecules 1 to form dimeric units. These units are linked with further hydrogen bonds (3.01 and 2.83 A) to a two-dimensional network parallel to the bc-plane. In solution the tripeptide 1 exhibits a particularly large magnetic nonequivalence of the two Aib-Cβ atoms (Δδ = 2.6 ppm). This indicates a highly populated conformation with a preferred orientation of the pro-S-Aib-Cβ relative to the Aib peptide carbonyl group. Ac-l-Ala-L-Ala-Ome: Rontgen-Strukturanalyse eines verbogenen β-Turns und Magnetische Nichtaquivalenz der Aib-Methylgruppen Ac-L-Ala-Aib-L-Ala-OMe (1) kristallisiert in der Raumgruppe P21 mit a = 10.796(2), b = 10.788(3), c = 14.625(6) A, β = 92.74(3)° und Z = 4 (R-Faktor fur 1590 unabhangige Reflexe 0.05). Im Gegensatz zu vergleichbaren Aib-Oligopeptiden bilden die beiden unabhangigen Molekule 1 in der Elementarzelle stark verbogene β-Turns. Die intramolekularen H-Brucken (41) sind extrem schwach (3.34 bzw. 3.67 A). Diese Aufweitung des β-Turns scheint aufgrund starker intermolekularer H-Brucken (2.94 und 2.85 A) innerhalb dimerer Einheiten zweier unabhangiger Molekule 1 zu erfolgen. Die Dimeren sind durch weitere starke H-Brucken (3.01 und 2.83 A) zu einem zweidimensionalen Netzwerk parallel der bc-Ebene verbunden. In Losung zeigt das Tripeptid 1 eine besonders ausgepragte magnetische Nichtaquivalenz der beiden Aib-Cβ-Atome (Δδ = 2.6 ppm). Diese deutet auf eine Konformation mit stark bevorzugter Orientierung der pro-S-Aib-Methylgruppe relativ zu der Aib-Peptidcarbonylgruppe hin.

[1]  G. Jung,et al.  Stabilizing effects of 2‐methylalanine residues on β‐turns and α‐helices , 1983 .

[2]  Frederic M. Richards,et al.  A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution , 1982, Nature.

[3]  H. Brückner,et al.  Synthesis of L-Prolyl-leucyl-α-aminoisobutyryl-α-amino-isobutyryl-glutamyl-valinol and Proof of Identity with the Isolated C-Terminal Fragment of Trichotoxin A-40 , 1982 .

[4]  P. Henderson,et al.  The isolation and purification of the elvapeptins , 1982 .

[5]  G. Jung,et al.  The α‐helical conformation of the undecapeptide boc‐l‐Ala‐[Aib‐Ala]2‐Glu(OBzl)‐Ala‐[Aib‐Ala]2‐OMe: Synthesis, X‐Ray crystal structure, and conformation in solution , 1982 .

[6]  G. Jung,et al.  Conformation of peptides containing α‐Aminoisobutyric acid the crystal structure of Boc‐Gly‐l‐Ala‐Aib‐OMe , 1982 .

[7]  Claudio Toniolo,et al.  Linear oligopeptides. 81. Solid-state and solution conformation of homooligo(.alpha.-aminoisobutyric acids) from tripeptide to pentapeptide: evidence for a 310 helix , 1982 .

[8]  G. Sheldrick,et al.  On the Structure of the Helical N‐Terminus in Alamethicin—α‐Helix or 310‐Helix? , 1981 .

[9]  G. Sheldrick,et al.  Zur Struktur des helicalen N-Terminus im Alamethicin – α-Helix oder 310-Helix?† , 1981 .

[10]  P. Balaram,et al.  Alamethicin, a Transmembrane Channel , 1981 .

[11]  Harold A. Scheraga,et al.  Sensitivity of polypeptide conformation to geometry. Theoretical conformational analysis of oligomers of .alpha.-aminoisobutyric acid , 1981 .

[12]  T. M. Balasubramanian,et al.  Crystal structures and conformational calculations of fragments of alamethicin containing aminoisobutyric acid , 1981 .

[13]  G. Jung,et al.  Darstellung, Charakterisierung und Konformationsbestimmung eines Undekapeptidhydrazids der N‐terminalen Alamethicin‐Sequenz , 1980 .

[14]  H. Brückner,et al.  Identification of N-acetyl-α-aminoisobutyric acid after selective trifluoroacetolysis of alamethicin and related peptide antibiotics , 1980 .

[15]  R. Oekonomopulos,et al.  Circular dichroism and conformational analysis of the membrane‐modifying peptide ‐N‐t‐Boc‐(Aib‐L‐Ala)5‐Gly‐Ala‐Aib‐Pro‐Ala‐Aib‐Aib‐Glu‐(OBzl)‐Gln‐OMe with respect to alamethicin , 1980, Biopolymers.

[16]  G. Jung,et al.  Synthese eines membranmodifizierenden Alamethicin‐analogen Nonadekapeptids , 1979 .

[17]  G. Jung,et al.  Die Sequenzen des membranmodifizierenden Peptid‐Antibioticums Trichotoxin A‐40 , 1979 .

[18]  H. Brückner,et al.  The sequences of the membrane-modifying peptide antibiotic trichotoxin A-40. , 1979, Angewandte Chemie.

[19]  G. Jung,et al.  Synthesis and conformation of a polyoxyethylene‐bound undecapeptide of the alamethicin helix and (2‐methylalanyl‐L‐alanine)1–7 , 1979 .

[20]  G. Jung,et al.  Trichotoxin A-40, a new membrane-exciting peptide. Part A. Isolation, characterization and conformation , 1978 .

[21]  G. Jung,et al.  Trichotoxin A-40, a new membrane-exciting peptide. Part B. Voltage-dependent pore formation in bilayer lipid membranes and comparison with other alamethicin analogues☆ , 1978 .

[22]  P. Balaram,et al.  The crystal and molecular structure of the amino terminal tetrapeptide of alamethicin. A novel 310 helical conformation. , 1977, Biochemical and biophysical research communications.

[23]  M. Johnson Possible three-dimensional models for the polypeptide backbone structure of alamethicin. , 1976, Journal of theoretical biology.

[24]  D. Leibfritz,et al.  Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part A. Sequence and conformation. , 1976, Biochimica et biophysica acta.

[25]  D. Leibfritz,et al.  Structural and membrane modifying porperties of suzukacillin, a peptide antibiotic related to alamethicin. Part B. Pore formation in black lipid films. , 1976, Biochimica et biophysica acta.

[26]  G. Jung,et al.  Conformational changes of alamethicin induced by solvent and temperature. A 13C-NMR and circular-dichroism study. , 1975, European journal of biochemistry.

[27]  A. Burgess,et al.  Conformational studies on alamethicin , 1973, Biopolymers.

[28]  If.,et al.  Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units , 1968, Biopolymers.

[29]  D. T. Cromer,et al.  X-ray scattering factors computed from numerical Hartree–Fock wave functions , 1968 .

[30]  G. Jung,et al.  13C-NMR und konformation eines membran-modifizierenden synthetischen nonadekapeptid-analogons von alamethicin und seiner zwischenstufen , 1982 .

[31]  G. Jung,et al.  Synthese von 2-methylalanin-peptiden, die pH-Abhängiggkeit ihrer 13C-NMR-spektren und eine neue methode zur auswertung über CS-diagramme , 1982 .

[32]  D. Leibfritz,et al.  13C NMR spectroscopic studies on the conformation during stepwise synthesis of peptides bound to solubilizing polymer supports , 1978 .

[33]  R. T. Coutts,et al.  POLYPEPTIDES AND PROTEINS , 1966 .