Growth and characterisation of InAsN/GaAs dilute nitride semiconductor alloys for the mid-infrared spectral range

We report the successful growth of InAsN onto GaAs substrates using nitrogen plasma source molecular beam epitaxy. We describe the spectral properties of InAsN alloys with N-content in the range 0 to 1% and photoluminescence emission in the mid-infrared spectral range. The photoluminescence emission of the sample containing 1% N reveals evidence of recombination from extended and localized states within the degenerate conduction band of InAsN. A comparison of GaAs and InAs based material shows little change in FWHM suggesting the change in substrate does not cause significant reduction in quality of the epilayers. Material grown is consistent with predictions from the band anti-crossing model (BAC model).

[1]  E. O’Reilly,et al.  Trends in the electronic structure of dilute nitride alloys , 2009 .

[2]  D. W. Pashley,et al.  Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE , 1989 .

[3]  N. Balkan,et al.  S-shaped behaviour of the temperature-dependent energy band gap in dilute nitrides , 2003 .

[4]  Kenichi Iga,et al.  Continuous wave operation of 1.26 [micro sign]m GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition , 2000 .

[5]  W. J. Schaffer,et al.  Nucleation and strain relaxation at the InAs/GaAs(100) heterojunction , 1983 .

[6]  Kouji Nakahara,et al.  A 1.3-µm GaInNAs/GaAs Single-Quantum-Well Laser Diode with a High Characteristic Temperature over 200 K , 2000 .

[7]  Stephen J. Sweeney,et al.  Insights into carrier recombination processes in 1.3 [micro sign]m GaInNAs-based semiconductor lasers attained using high pressure , 2001 .

[8]  W. Li,et al.  InGaAsSbN: A dilute nitride compound for midinfrared optoelectronic devices , 2003 .

[9]  Henning Riechert,et al.  1.29 /spl mu/m GaInNAs multiple quantum-well ridge-waveguide laser diodes with improved performance , 1999 .

[10]  Kent D. Choquette,et al.  Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um , 2000 .

[11]  R. Stradling,et al.  Excitonic photoluminescence in high-purity InAs MBE epilayers on GaAs substrates , 1993 .

[12]  Nuggehalli M. Ravindra,et al.  Temperature dependence of the energy gap in semiconductors , 1979 .

[13]  Hao-Hsiung Lin,et al.  Band Gap Reduction in InAsN Alloys , 2003 .

[14]  K. Onabe,et al.  RF-MBE growth of InAsN layers on GaAs (001) substrates using a thick InAs buffer layer , 2002, International Conference on Molecular Bean Epitaxy.

[15]  A. Krier,et al.  Properties of dilute InAsN layers grown by liquid phase epitaxy , 2008 .

[16]  C. W. Tu,et al.  Mechanism for low-temperature photoluminescence in GaNAs/GaAs structures grown by molecular-beam epitaxy , 1999 .

[17]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[18]  A. Krier,et al.  Room temperature photoluminescence at 4.5μm from InAsN , 2008 .

[19]  H. Cerva,et al.  Morphology and optical properties of InAs(N) quantum dots , 2004 .

[20]  Hao-Hsiung Lin,et al.  Band gap reduction in InAsN alloy , 2002, Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307).

[21]  Yujie J. Ding,et al.  Evidence of many-body, fermi-energy edge singularity in InN films grown on GaN buffer layers , 2007, 2007 Quantum Electronics and Laser Science Conference.

[22]  Charles W. Tu,et al.  Bowing parameter of the band-gap energy of GaNxAs1−x , 1997 .

[23]  A. Segmüller,et al.  Inhomogeneous lattice distortion in the heteroepitaxy of InAs on GaAs , 1987 .

[24]  Schwarz,et al.  Fermi-edge singularity in degenerate n-type bulk InAs. , 1993, Physical review. B, Condensed matter.

[25]  A. Krier,et al.  Photoluminescence in InAsN epilayers grown by molecular beam epitaxy , 2008 .

[26]  Jyh-Shyang Wang,et al.  Growth of InAsN/InGaAs(P) quantum wells on InP by gas source molecular beam epitaxy , 2001 .

[27]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[28]  P. H. Jefferson,et al.  Photoluminescence spectroscopy of bandgap reduction in dilute InNAs alloys , 2005 .

[29]  A. Krier,et al.  Molecular beam epitaxial growth of InAsN:Sb for midinfrared Optoelectronics , 2008 .

[30]  A. Zhukov,et al.  GaAsN/GaAs and InGaAsN/GaAs heterostructures grown by molecular beam epitaxy , 1998 .