Smart sensing of the multifunctional properties of magnetron sputtered $MoS_2$ across the amorphous-crystalline transition

Molybdenum disulfide, $MoS_2$, is a next-generation semiconductor and is frequently integrated into emergent optoelectronic technologies based on two-dimensional materials. Here, we present a method that provides direct optical feedback on the thickness and crystallinity of sputter-deposited $MoS_2$ down to the few-layer regime. This smart sensing enables tracking the material's functional properties, such as excitonic response, sheet resistance, and hardness across the amorphous-crystalline transition. To illustrate the potential of such feedback-controlled fabrication, we realized $MoS_2$-based hyperbolic metamaterials (HMM) with controllable optical topological transitions and hardness.

[1]  Peng Zheng,et al.  Quantum Plexcitonic Sensing. , 2023, Nano letters.

[2]  E. Goldenberg,et al.  Nanostructured MoS2 thin films: Effect of substrate temperature on microstructure, optical, and electrical properties , 2023, Journal of Vacuum Science & Technology A.

[3]  A. Kolobov,et al.  Anomalous electrical conductivity change in MoS2 during the transition from the amorphous to crystalline phase , 2022, Ceramics International.

[4]  M. Dugger,et al.  Quality Control Metrics to Assess MoS2 Sputtered Films for Tribological Applications , 2022, Tribology Letters.

[5]  Rajesh Kumar,et al.  Sputter deposition of 2D MoS2 thin films -A critical review from a surface and structural perspective , 2022, Inorganic Chemistry Communications.

[6]  R. Spolenak,et al.  Strain‐Driven Thermal and Optical Instability in Silver/Amorphous‐Silicon Hyperbolic Metamaterials , 2022, Advanced Optical Materials.

[7]  Abu Dzar Al-Ghiffari,et al.  Systematic Review of Molybdenum Disulfide for Solar Cell Applications: Properties, Mechanism and Application , 2022, Materials Today Communications.

[8]  Jong-Hyun Ahn,et al.  Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor , 2022, Nature Nanotechnology.

[9]  Lena Du,et al.  Monitoring the Material Quality of Two-Dimensional Transition Metal Dichalcogenides , 2022, The Journal of Physical Chemistry C.

[10]  C. V. Singh,et al.  High Performance Space Lubrication of MoS2 with Tantalum , 2022, Advanced Functional Materials.

[11]  Shuiyuan Wang,et al.  The Road for 2D Semiconductors in the Silicon Age , 2021, Advanced materials.

[12]  J. Rho,et al.  Experimental demonstration of broadband negative refraction at visible frequencies by critical layer thickness analysis in a vertical hyperbolic metamaterial , 2021, Nanophotonics.

[13]  A. Kolobov,et al.  Amorphous-to-Crystal Transition in Quasi-Two-Dimensional MoS2: Implications for 2D Electronic Devices , 2021, ACS Applied Nano Materials.

[14]  A. Chiappini,et al.  2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film , 2021, npj 2D Materials and Applications.

[15]  A. Gyul’maliev,et al.  On the Mechanism of Sulfur Removal during Hydroconversion in the Presence of a Catalyst MoS2 , 2021, Russian Journal of Applied Chemistry.

[16]  R. Synowicki,et al.  In‐Plane and Out‐of‐Plane Optical Properties of Monolayer, Few‐Layer, and Thin‐Film MoS 2 from 190 to 1700 nm and Their Application in Photonic Device Design , 2021 .

[17]  A. Catellani,et al.  Hyperbolic Metamaterials with Extreme Mechanical Hardness , 2021, Advanced Optical Materials.

[18]  N. Roxhed,et al.  Large-area integration of two-dimensional materials and their heterostructures by wafer bonding , 2021, Nature Communications.

[19]  R. Kumar,et al.  A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments , 2020, Inorganic Chemistry Communications.

[20]  C. Stampfer,et al.  Use of the Indirect Photoluminescence Peak as an Optical Probe of Interface Defectivity in MoS2 , 2020, Advanced Materials Interfaces.

[21]  C. Wen,et al.  Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method , 2020, Nature Communications.

[22]  A. Kolobov,et al.  Structural Metastability in Chalcogenide Semiconductors: The Role of Chemical Bonding , 2020, physica status solidi (b).

[23]  Ethan C. Ahn 2D materials for spintronic devices , 2020, npj 2D Materials and Applications.

[24]  A. Mazaheri,et al.  MoS2-on-paper optoelectronics: drawing photodetectors with van der Waals semiconductors beyond graphite. , 2020, Nanoscale.

[25]  Guangyu Zhang,et al.  Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route , 2019, Nature Communications.

[26]  Krishna C. Saraswat,et al.  Infrared Detectable MoS2 Phototransistor and Its Application to Artificial Multi-Level Optic-Neural Synapse. , 2019, ACS nano.

[27]  A. Bol,et al.  The Origin of High Activity of Amorphous MoS2 in the Hydrogen Evolution Reaction , 2019, ChemSusChem.

[28]  K. Jiang,et al.  Amorphous MoS2 Photodetector with Ultra-Broadband Response , 2019, ACS Applied Electronic Materials.

[29]  Wave Propagation , 2018, The Electrical Engineering Handbook - Six Volume Set.

[30]  B. Jonker,et al.  A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers , 2018, APL Materials.

[31]  H. Komsa,et al.  Photoluminescence Study of B‐Trions in MoS2 Monolayers with High Density of Defects , 2018, physica status solidi (b).

[32]  M. Bae,et al.  Changes in the Raman spectra of monolayer MoS 2 upon thermal annealing , 2018, Journal of Raman Spectroscopy.

[33]  J. Shan,et al.  Light–valley interactions in 2D semiconductors , 2018, Nature Photonics.

[34]  W. Nix,et al.  Imperfections in Crystalline Solids , 2018, MRS Bulletin.

[35]  Jiuqiang Li,et al.  Tuning the Composition and Structure of Amorphous Molybdenum Sulfide/Carbon Black Nanocomposites by Radiation Technique for Highly Efficient Hydrogen Evolution , 2017, Scientific Reports.

[36]  Kenji Watanabe,et al.  Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers , 2017, 1702.05857.

[37]  G. Ceder,et al.  Evaluating structure selection in the hydrothermal growth of FeS2 pyrite and marcasite , 2016, Nature Communications.

[38]  A. Knorr,et al.  Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides , 2016, Nature Communications.

[39]  A. Balan,et al.  Raman Shifts in Electron-Irradiated Monolayer MoS2. , 2016, ACS nano.

[40]  Steven J. Byrnes,et al.  Multilayer optical calculations , 2016, 1603.02720.

[41]  I. Smolyaninov Hyperbolic Metamaterials , 2015, 1510.07137.

[42]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[43]  Zhaowei Liu,et al.  Hyperbolic metamaterials and their applications , 2015 .

[44]  D. Chi,et al.  Growth of wafer-scale MoS2 monolayer by magnetron sputtering. , 2015, Nanoscale.

[45]  Cinzia Casiraghi,et al.  Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures. , 2014, ACS nano.

[46]  F. Miao,et al.  Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. , 2014, ACS nano.

[47]  L. Ottaviano,et al.  Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum , 2013 .

[48]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[49]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[50]  Z. Jacob,et al.  Quantum nanophotonics using hyperbolic metamaterials , 2012, 1204.5529.

[51]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[52]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[53]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[54]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[55]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[56]  D. Seo,et al.  A nanoindentation study on the micromechanical characteristics of API X100 pipeline steel , 2009 .

[57]  Izhak Etsion,et al.  Friction and wear of MoS2 films on laser textured steel surfaces , 2008 .

[58]  Charlie Tsai,et al.  Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. , 2016, Nature materials.

[59]  Andras Kis,et al.  MoS2 and semiconductors in the flatland , 2015 .

[60]  Federico Capasso,et al.  Nanometre optical coatings based on strong interference effects in highly absorbing media. , 2013, Nature materials.

[61]  Bo Lojek,et al.  History of semiconductor engineering , 2007 .

[62]  Stephan W Koch,et al.  Many-body correlations and excitonic effects in semiconductor spectroscopy , 2006 .

[63]  V. Buck Structure and density of sputtered MoS2-films , 1986 .