A volume-of-fluid method for simulation of compressible axisymmetric multi-material flow

A two-dimensional Eulerian hydrodynamic method for the numerical simulation of inviscid compressible axisymmetric multi-material flow in external force fields for the situation of pure fluids separated by macroscopic interfaces is presented. The method combines an implicit Lagrangian step with an explicit Eulerian advection step. Individual materials obey separate energy equations, fulfill general equations of state, and may possess different temperatures. Material volume is tracked using a piecewise linear volume-of-fluid method. An overshoot-free logically simple and economic material advection algorithm for cylinder coordinates is derived, in an algebraic formulation. New aspects arising in the case of more than two materials such as the material ordering strategy during transport are presented. One- and two-dimensional numerical examples are given.

[1]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[2]  F. G. Blottner,et al.  Numerical Methods in Fluid Dynamics , 1978 .

[3]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[4]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[5]  Hervé Guillard,et al.  A five equation reduced model for compressible two phase flow problems , 2005 .

[6]  David J. Benson,et al.  Volume of fluid interface reconstruction methods for multi - material problems , 2002 .

[7]  Vladimir V. Shuvalov,et al.  3D hydrodynamic code sova for multimaterial flows, application to Shoemakerlevy 9 comet impact problem , 1999 .

[8]  V. Shuvalov,et al.  Multi-dimensional hydrodynamic code SOVA for interfacial flows: Application to the thermal layer effect , 1999 .

[9]  E. Puckett,et al.  A High-Order Godunov Method for Multiple Condensed Phases , 1996 .

[10]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[11]  N. Artemieva,et al.  Shock metamorphism on the ocean floor (numerical simulations) , 2002 .

[12]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[13]  B. Ivanov,et al.  Lockne crater as a result of marine-target oblique impact , 2005 .

[14]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[15]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[16]  D. Thévenin,et al.  Accurate Boundary Conditions for Multicomponent Reactive Flows , 1995 .

[17]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999 .

[18]  E. Puckett,et al.  Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .

[19]  Richard Saurel,et al.  A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation , 2001, Journal of Fluid Mechanics.

[20]  S. Zaleski,et al.  A geometrical area-preserving volume-of-fluid advection method , 2003 .

[21]  David J. Benson,et al.  Eulerian finite element methods for the micromechanics of heterogeneous materials: Dynamic prioritization of material interfaces , 1998 .

[22]  Richard Saurel,et al.  Modelling detonation waves in heterogeneous energetic materials , 2004 .

[23]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[24]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[25]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[26]  Elisabetta Pierazzo,et al.  A Reevaluation of Impact Melt Production , 1997 .

[27]  P. Colella,et al.  A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing , 2002 .

[28]  J. M. McGlaun,et al.  CTH: A three-dimensional shock wave physics code , 1990 .

[29]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .