Aging and degeneration of the human intervertebral disc.

Human intervertebral discs undergo age-related degenerative changes that contribute to some of the most common causes of impairment and disability for middle aged and older persons: spine stiffness, neck pain, and back pain. Potential causes of the age-related degeneration of intervertebral discs include declining nutrition, loss of viable cells, cell senescence, post-translational modification of matrix proteins, accumulation of degraded matrix molecules, and fatigue failure of the matrix. The most important of these mechanisms appears to be decreasing nutrition of the central disc that allows accumulation of cell waste products and degraded matrix molecules, impairs cell nutrition, and causes a fall in pH levels that further compromises cell function and may cause cell death. Although aging changes of the disc appear to be inevitable, identification of activities and agents that accelerate these changes may help decrease the rate and severity of disc degeneration; and recent work suggests that methods can be developed that will regenerate disc tissue.

[1]  Van C. Mow,et al.  Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus , 1995, Spine.

[2]  A. Schultz,et al.  Lumbar Disc Degeneration: Correlation with Age, Sex, and Spine Level in 600 Autopsy Specimens , 1988, Spine.

[3]  W M Lai,et al.  A triphasic theory for the swelling and deformation behaviors of articular cartilage. , 1991, Journal of biomechanical engineering.

[4]  K. Olczyk Age-related changes of elastin content in human intervertebral discs. , 1994, Folia histochemica et cytobiologica.

[5]  P. Brinckmann,et al.  Interlaminar Shear Stresses and Laminae Separation in a Disc: Finite Element Analysis of the L3‐L4 Motion Segment Subjected to Axial Compressive Loads , 1995, Spine.

[6]  A. V. D. Hooff Histological Age Changes in the Anulus Fibrosus of the Human Intervertebral Disk , 1964 .

[7]  J. Leong,et al.  Long‐Term Results of Lumbar Intervertebral Disc Prolapse , 1983, Spine.

[8]  J. Lotz,et al.  Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[9]  R. M. Bowen,et al.  Incompressible porous media models by use of the theory of mixtures , 1980 .

[10]  K Olczyk,et al.  Age-related changes in proteoglycans of human intervertebral discs. , 1994, Zeitschrift fur Rheumatologie.

[11]  Nicholas,et al.  Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. , 1990, The Journal of bone and joint surgery. American volume.

[12]  Jd Jan Janssen,et al.  Triphasic finite element model for swelling porous media , 1995 .

[13]  H A Yuan,et al.  The artificial disc: theory, design and materials. , 1996, Biomaterials.

[14]  B R Simon,et al.  1985 Volvo Award in Biomechanics: Poroelastic Dynamic Structural Models of Rhesus Spinal Motion Segments , 1985, Spine.

[15]  A. Hiltner,et al.  A water transport model for the creep response of the intervertebral disc , 1990 .

[16]  A B Schultz,et al.  Nonlinear behavior of the human intervertebral disc under axial load. , 1976, Journal of Biomechanics.

[17]  Y Lanir,et al.  Biorheology and fluid flux in swelling tissues. I. Bicomponent theory for small deformations, including concentration effects. , 1987, Biorheology.

[18]  N. Patronas,et al.  A study of computer-assisted tomography. I. The incidence of positive CAT scans in an asymptomatic group of patients. , 1984, Spine.

[19]  Van C. Mow,et al.  Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc , 1996, Spine.

[20]  D. Ogilvie-Harris,et al.  In Vivo Diurnal Variation in Intervertebral Disc Volume and Morphology , 1994, Spine.

[21]  M. B. Coventry,et al.  THE INTERVERTEBRAL DISC: ITS MICROSCOPIC ANATOMY AND PATHOLOGY , 1945 .

[22]  Alain J. P. Alix,et al.  Bovine Elastin and κ-Elastin Secondary Structure Determination by Optical Spectroscopies (*) , 1995, The Journal of Biological Chemistry.

[23]  V C Mow,et al.  Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[24]  K. Olczyk Age-related changes in collagen of human intervertebral disks. , 1992, Gerontology.

[25]  W. Kirkaldy-Willis,et al.  Pathology and Pathogenesis of Lumbar Spondylosis and Stenosis , 1978, Spine.

[26]  G Garbutt,et al.  Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. , 1996, Annals of the rheumatic diseases.

[27]  A Shirazi-Adl,et al.  Poroelastic creep response analysis of a lumbar motion segment in compression. , 1996, Journal of biomechanics.

[28]  V. Mow,et al.  Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. , 1980, Journal of biomechanical engineering.

[29]  A B Schultz,et al.  Finite element stress analysis of an intervertebral disc. , 1974, Journal of biomechanics.

[30]  W. Akeson,et al.  Proteoglycan chemistry of the intervertebral disks. , 1977, Clinical orthopaedics and related research.

[31]  J. P. Thompson,et al.  Preliminary Evaluation of a Scheme for Grading the Gross Morphology of the Human Intervertebral Disc , 1990, Spine.

[32]  W C Hutton,et al.  The Effect of Posture on the Fluid Content of Lumbar Intervertebral Discs , 1983, Spine.

[33]  J. Urban,et al.  Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration , 1988, Spine.

[34]  C. Hirsch,et al.  Anatomical and clinical studies on lumbar disc degeneration. , 1992, Acta orthopaedica Scandinavica.

[35]  D. Eyre,et al.  Biochemical aspects of development and ageing of human lumbar intervertebral discs. , 1977, Rheumatology and rehabilitation.

[36]  J. Urban,et al.  Swelling pressure of the inervertebral disc: influence of proteoglycan and collagen contents. , 1985, Biorheology.

[37]  J M Huyghe,et al.  Confined compression of canine annulus fibrosus under chemical and mechanical loading. , 1995, Journal of biomechanical engineering.

[38]  A. M. Ahmed,et al.  Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. , 1984, Spine.

[39]  A. Maroudas,et al.  Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. , 1979, Biorheology.

[40]  J. Weinstein,et al.  Long-term Follow-up of Lower Lumbar Fusion Patients , 1987, Spine.

[41]  J. Urban,et al.  Intervertebral Disc Nutrition as Related to Spinal Movements and Fusion , 1986 .

[42]  M. Adams,et al.  Sustained Loading Generates Stress Concentrations in Lumbar Intervertebral Discs , 1996, Spine.

[43]  Robert L. Spilker,et al.  A Finite Element Formulation for Soft Hydrated Tissues , 1988 .

[44]  E. Sevick-Muraca,et al.  Quantitative optical spectroscopy for tissue diagnosis. , 1996, Annual review of physical chemistry.

[45]  J. Martínez-Quiñones,et al.  Lumbar disc herniation . A controlled , prospective study with ten years of observation , 2022 .

[46]  A. Shirazi-Adl,et al.  Finite–Element Simulation of Changes in the Fluid Content of Human Lumbar Discs: Mechanical and Clinical Implications , 1992, Spine.

[47]  B R Simon,et al.  Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk. , 1985, Journal of biomechanical engineering.

[48]  V C Mow,et al.  The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. , 1997, Journal of biomechanics.

[49]  M. Pope,et al.  Water Content in Human Intervertebral Discs: Part II. Viscoelastic Behavior , 1987, Spine.

[50]  W M Lai,et al.  Fluid transport and mechanical properties of articular cartilage: a review. , 1984, Journal of biomechanics.

[51]  V. Mow,et al.  Triphasic Theory for Swelling Properties of Hydrated Charged Soft Biological Tissues , 1990 .

[52]  D. S. Hickey,et al.  Radial bulging of the annulus fibrosus during compression of the intervertebral disc. , 1983, Journal of biomechanics.

[53]  A. Walton,et al.  Transmission and Attenuated Total Reflection (ATR) Infrared Spectra of Bone and Collagen , 1968 .

[54]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[55]  Y. K. Liu,et al.  Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. , 1978, The Journal of bone and joint surgery. American volume.

[56]  J Kraemer,et al.  Dynamic characteristics of the vertebral column, effects of prolonged loading. , 1985, Ergonomics.

[57]  W M Lai,et al.  Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. , 1981, Journal of biomechanical engineering.

[58]  Jd Jan Janssen,et al.  Quadriphasic mechanics of swelling incompressible porous media , 1997 .

[59]  R. Moskowitz,et al.  Spinal degeneration: Pathogenesis and medical management , 1997 .

[60]  V C Mow,et al.  Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus , 1996, Spine.

[61]  A van der Voet,et al.  A comparison of finite element codes for the solution of biphasic poroelastic problems. , 1997, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[62]  J. D. Janssen,et al.  Nonhomogeneous Permeability of Canine Anulus Fibrosus , 1997, Spine.

[63]  E. Baer,et al.  The response of the hierarchical structure of the intervertebral disc to uniaxial compression , 1990 .

[64]  B. Simon,et al.  Multiphase Poroelastic Finite Element Models for Soft Tissue Structures , 1992 .

[65]  A. Maroudas,et al.  Swelling of the intervertebral disc in vitro. , 1981, Connective tissue research.

[66]  A. Nachemson,et al.  In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. , 1970, Acta orthopaedica Scandinavica.

[67]  M. Adams,et al.  Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry , 1992, Spine.

[68]  A. Boskey,et al.  FTIR Microspectroscopic Analysis of Normal Human Cortical and Trabecular Bone , 1997, Calcified Tissue International.

[69]  J. W. Maxey The Aging spine: Essentials of Pathophysiology, Diagnosis and Treatment , 1991 .

[70]  J. Galante Tensile properties of the human lumbar annulus fibrosus. , 1967, Acta orthopaedica Scandinavica.

[71]  J P Laible,et al.  A Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc , 1993, Spine.

[72]  V. Goel,et al.  Kinematics of the Whole Lumbar Spine: Effect of Discectomy , 1985, Spine.

[73]  A Ratcliffe,et al.  Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. , 1994, Spine.

[74]  K. Olczyk Age-related changes in glycosaminoglycans of human intervertebral discs. , 1993, Folia histochemica et cytobiologica.

[75]  B. Vernon‐roberts,et al.  Annular tears and disc degeneration in the lumbar spine. A post-mortem study of 135 discs. , 1992, The Journal of bone and joint surgery. British volume.

[76]  S. Orr Infra-red spectroscopic studies of some polysaccharides. , 1954, Biochimica et biophysica acta.

[77]  R. Soames,et al.  Human intervertebral disc: Structure and function , 1988, The Anatomical record.