Faà di Bruno for operads and internal algebras
暂无分享,去创建一个
[1] Joachim Kock,et al. Decomposition spaces, incidence algebras and Möbius inversion II: Completeness, length filtration, and finiteness , 2015, Advances in Mathematics.
[2] Joachim Kock,et al. Decomposition spaces, incidence algebras and Möbius inversion , 2014 .
[3] Mark Weber,et al. Internal algebra classifiers as codescent objects of crossed internal categories , 2015, 1503.07585.
[4] L. Foissy. Fa\`a di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations , 2007 .
[5] W. Steven Gray,et al. A combinatorial Hopf algebra for nonlinear output feedback control systems , 2014, 1406.5396.
[6] N. Gambino,et al. Polynomial functors and polynomial monads , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Alain Connes,et al. Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 2000 .
[8] Kurusch Ebrahimi-Fard,et al. Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series , 2008, Adv. Appl. Math..
[9] Warren P. Johnson. The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..
[10] Alain Connes,et al. Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .
[11] James Dolan,et al. Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes , 1997 .
[12] Kurusch Ebrahimi-Fard,et al. Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras , 2014, Int. J. Algebra Comput..
[13] D. Kreimer,et al. Hopf algebras in renormalization theory: Locality and Dyson-Schwinger equations from Hochschild cohomology , 2005, hep-th/0506190.
[14] Ernst Hairer,et al. Algebraic Structures of B-series , 2010, Found. Comput. Math..
[15] Pierre Cartier,et al. Problemes combinatoires de commutation et rearrangements , 1969 .
[16] Hector Figueroa,et al. Combinatorial Hopf algebras in quantum field theory. I , 2005 .
[17] Joachim Kock. Polynomial functors and combinatorial Dyson–Schwinger equations , 2015, 1512.03027.
[18] Joachim Kock,et al. Groupoids and Faà di Bruno formulae for Green functions in bialgebras of trees , 2012, 1207.6404.
[19] Joachim Kock,et al. Homotopy linear algebra , 2016, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[20] Mark Weber,et al. Operads within Monoidal Pseudo Algebras , 2004, Appl. Categorical Struct..
[21] Joachim Kock. Categorification of Hopf algebras of rooted trees , 2011, 1109.5785.
[22] H. Munthe-Kaas. Lie-Butcher theory for Runge-Kutta methods , 1995 .
[23] Christian Krattenthaler,et al. Non-commutative Hopf algebra of formal diffeomorphisms , 2004 .
[24] G. Constantine,et al. A Multivariate Faa di Bruno Formula with Applications , 1996 .
[25] Joachim Kock,et al. Data types with symmetries and polynomial functors over groupoids , 2012, ArXiv.
[26] Joachim Kock. Perturbative Renormalisation for Not-Quite-Connected Bialgebras , 2014, 1411.3098.
[27] James Dolan,et al. From Finite Sets to Feynman Diagrams , 2001 .
[28] Marcelo Aguiar,et al. Monoidal Functors, Species, and Hopf Algebras , 2010 .
[29] Peter Doubilet. A Hopf algebra arising from the lattice of partitions of a set , 1974 .
[30] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[31] Mark Weber,et al. Polynomials in categories with pullbacks , 2011, 1106.1983.
[32] Renormalization of Gauge Fields: A Hopf Algebra Approach , 2006, hep-th/0610137.
[33] F. Patras,et al. Exponential Renormalization , 2010, 1003.1679.
[35] The Eckmann–Hilton argument and higher operads , 2002, math/0207281.
[36] Ross Street,et al. Fibrations and Yoneda's lemma in a 2-category , 1974 .
[37] Homotopy theory for algebras over polynomial monads , 2013, 1305.0086.
[38] Loic Foissy,et al. Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations , 2007, 0707.1204.
[39] W. D. Suijlekom. The Structure of Renormalization Hopf Algebras for Gauge Theories I: Representing Feynman Graphs on BV-Algebras , 2008, 0807.0999.
[40] Joachim Kock,et al. Decomposition spaces, incidence algebras and Möbius inversion I: Basic theory , 2015, Advances in Mathematics.
[41] T. Robinson. New perspectives on exponentiated derivations, the formal Taylor theorem, and Faà di Bruno's formula , 2009, 0903.3391.
[42] Mark Weber. Algebraic Kan extensions along morphisms of internal algebra classifiers , 2015, 1511.04911.
[43] W. Steven Gray,et al. A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback , 2011, IEEE Conference on Decision and Control and European Control Conference.
[44] Thomas M. Fiore,et al. Monads in double categories , 2010, 1006.0797.
[45] Gian-Carlo Rota,et al. Coalgebras and Bialgebras in Combinatorics , 1979 .
[46] J. P. May,et al. The geometry of iterated loop spaces , 1972 .
[47] L. Nyssen. Physics and Number Theory , 2006 .
[48] Mark Weber. Familial 2-functors and parametric right adjoints , 2007 .
[49] F. Hoppe. Faà di Bruno's formula and the distributions of random partitions in population genetics and physics. , 2008, Theoretical population biology.
[50] Joachim Kock,et al. Polynomial Functors and Trees , 2008, 0807.2874.
[51] Maurice G. Kendall,et al. The advanced theory of statistics , 1945 .
[52] Mark Weber. OPERADS AS POLYNOMIAL 2-MONADS , 2014, 1412.7599.