Faà di Bruno for operads and internal algebras

For any coloured operad R, we prove a Fa\`a di Bruno formula for the `connected Green function' in the incidence bialgebra of R. This generalises on one hand the classical Fa\`a di Bruno formula (dual to composition of power series), corresponding to the case where R is the terminal reduced operad, and on the other hand the Faa di Bruno formula for P-trees of G\'alvez--Kock--Tonks (P a finitary polynomial endofunctor), which corresponds to the case where R is the free operad on P. Following G\'alvez--Kock--Tonks, we work at the objective level of groupoid slices, hence all proofs are `bijective': the formula is established as the homotopy cardinality of an explicit equivalence of groupoids. In fact we establish the formula more generally in a relative situation, for algebras for one polynomial monad internal to another. This covers in particular nonsymmetric operads (for which the terminal reduced case yields the noncommutative Fa\`a di Bruno formula of Brouder--Frabetti--Krattenthaler).

[1]  Joachim Kock,et al.  Decomposition spaces, incidence algebras and Möbius inversion II: Completeness, length filtration, and finiteness , 2015, Advances in Mathematics.

[2]  Joachim Kock,et al.  Decomposition spaces, incidence algebras and Möbius inversion , 2014 .

[3]  Mark Weber,et al.  Internal algebra classifiers as codescent objects of crossed internal categories , 2015, 1503.07585.

[4]  L. Foissy Fa\`a di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations , 2007 .

[5]  W. Steven Gray,et al.  A combinatorial Hopf algebra for nonlinear output feedback control systems , 2014, 1406.5396.

[6]  N. Gambino,et al.  Polynomial functors and polynomial monads , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Alain Connes,et al.  Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 2000 .

[8]  Kurusch Ebrahimi-Fard,et al.  Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series , 2008, Adv. Appl. Math..

[9]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[10]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[11]  James Dolan,et al.  Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes , 1997 .

[12]  Kurusch Ebrahimi-Fard,et al.  Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras , 2014, Int. J. Algebra Comput..

[13]  D. Kreimer,et al.  Hopf algebras in renormalization theory: Locality and Dyson-Schwinger equations from Hochschild cohomology , 2005, hep-th/0506190.

[14]  Ernst Hairer,et al.  Algebraic Structures of B-series , 2010, Found. Comput. Math..

[15]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[16]  Hector Figueroa,et al.  Combinatorial Hopf algebras in quantum field theory. I , 2005 .

[17]  Joachim Kock Polynomial functors and combinatorial Dyson–Schwinger equations , 2015, 1512.03027.

[18]  Joachim Kock,et al.  Groupoids and Faà di Bruno formulae for Green functions in bialgebras of trees , 2012, 1207.6404.

[19]  Joachim Kock,et al.  Homotopy linear algebra , 2016, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  Mark Weber,et al.  Operads within Monoidal Pseudo Algebras , 2004, Appl. Categorical Struct..

[21]  Joachim Kock Categorification of Hopf algebras of rooted trees , 2011, 1109.5785.

[22]  H. Munthe-Kaas Lie-Butcher theory for Runge-Kutta methods , 1995 .

[23]  Christian Krattenthaler,et al.  Non-commutative Hopf algebra of formal diffeomorphisms , 2004 .

[24]  G. Constantine,et al.  A Multivariate Faa di Bruno Formula with Applications , 1996 .

[25]  Joachim Kock,et al.  Data types with symmetries and polynomial functors over groupoids , 2012, ArXiv.

[26]  Joachim Kock Perturbative Renormalisation for Not-Quite-Connected Bialgebras , 2014, 1411.3098.

[27]  James Dolan,et al.  From Finite Sets to Feynman Diagrams , 2001 .

[28]  Marcelo Aguiar,et al.  Monoidal Functors, Species, and Hopf Algebras , 2010 .

[29]  Peter Doubilet A Hopf algebra arising from the lattice of partitions of a set , 1974 .

[30]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[31]  Mark Weber,et al.  Polynomials in categories with pullbacks , 2011, 1106.1983.

[32]  Renormalization of Gauge Fields: A Hopf Algebra Approach , 2006, hep-th/0610137.

[33]  F. Patras,et al.  Exponential Renormalization , 2010, 1003.1679.

[35]  The Eckmann–Hilton argument and higher operads , 2002, math/0207281.

[36]  Ross Street,et al.  Fibrations and Yoneda's lemma in a 2-category , 1974 .

[37]  Homotopy theory for algebras over polynomial monads , 2013, 1305.0086.

[38]  Loic Foissy,et al.  Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations , 2007, 0707.1204.

[39]  W. D. Suijlekom The Structure of Renormalization Hopf Algebras for Gauge Theories I: Representing Feynman Graphs on BV-Algebras , 2008, 0807.0999.

[40]  Joachim Kock,et al.  Decomposition spaces, incidence algebras and Möbius inversion I: Basic theory , 2015, Advances in Mathematics.

[41]  T. Robinson New perspectives on exponentiated derivations, the formal Taylor theorem, and Faà di Bruno's formula , 2009, 0903.3391.

[42]  Mark Weber Algebraic Kan extensions along morphisms of internal algebra classifiers , 2015, 1511.04911.

[43]  W. Steven Gray,et al.  A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback , 2011, IEEE Conference on Decision and Control and European Control Conference.

[44]  Thomas M. Fiore,et al.  Monads in double categories , 2010, 1006.0797.

[45]  Gian-Carlo Rota,et al.  Coalgebras and Bialgebras in Combinatorics , 1979 .

[46]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[47]  L. Nyssen Physics and Number Theory , 2006 .

[48]  Mark Weber Familial 2-functors and parametric right adjoints , 2007 .

[49]  F. Hoppe Faà di Bruno's formula and the distributions of random partitions in population genetics and physics. , 2008, Theoretical population biology.

[50]  Joachim Kock,et al.  Polynomial Functors and Trees , 2008, 0807.2874.

[51]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[52]  Mark Weber OPERADS AS POLYNOMIAL 2-MONADS , 2014, 1412.7599.