Fast Sparse Gaussian Markov Random Fields Learning Based on Cholesky Factorization

Learning the sparse Gaussian Markov Random Field, or conversely, estimating the sparse inverse covariance matrix is an approach to uncover the underlying dependency structure in data. Most of the current methods solve the problem by optimizing the maximum likelihood objective with a Laplace prior L1 on entries of a precision matrix. We propose a novel objective with a regularization term which penalizes an approximate product of the Cholesky decomposed precision matrix. This new reparametrization of the penalty term allows efficient coordinate descent optimization, which in synergy with an active set approach results in a very fast and efficient method for learning the sparse inverse covariance matrix. We evaluated the speed and solution quality of the newly proposed SCHL method on problems consisting of up to 24,840 variables. Our approach was several times faster than three state-of-the-art approaches. We also demonstrate that SCHL can be used to discover interpretable networks, by applying it to a high impact problem from the health informatics domain.

[1]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[2]  Vwani P. Roychowdhury,et al.  Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..

[3]  Arian Maleki,et al.  Iterative Thresholding Algorithm for Sparse Inverse Covariance Estimation , 2012, NIPS.

[4]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[5]  Pradeep Ravikumar,et al.  Sparse inverse covariance matrix estimation using quadratic approximation , 2011, MLSLP.

[6]  J. Cavanaugh Biostatistics , 2005, Definitions.

[7]  J. Zico Kolter,et al.  Sparse Gaussian Conditional Random Fields: Algorithms, Theory, and Application to Energy Forecasting , 2013, ICML.

[8]  Michael I. Jordan Graphical Models , 2003 .

[9]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[10]  Veljko M. Milutinovic,et al.  Distance Based Modeling of Interactions in Structured Regression , 2016, IJCAI.

[11]  Eran Treister,et al.  A Block-Coordinate Descent Approach for Large-scale Sparse Inverse Covariance Estimation , 2014, NIPS.

[12]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[13]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[14]  Katya Scheinberg,et al.  Learning Sparse Gaussian Markov Networks Using a Greedy Coordinate Ascent Approach , 2010, ECML/PKDD.

[15]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[16]  M. West,et al.  Sparse graphical models for exploring gene expression data , 2004 .

[17]  Mohamed F. Ghalwash,et al.  Effectiveness of Multiple Blood-Cleansing Interventions in Sepsis, Characterized in Rats , 2016, Scientific Reports.

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  R. Pearl Biometrics , 1914, The American Naturalist.

[20]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[21]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[22]  Pradeep Ravikumar,et al.  BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables , 2013, NIPS.

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[25]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[26]  Stephen Gould,et al.  Projected Subgradient Methods for Learning Sparse Gaussians , 2008, UAI.

[27]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[28]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[29]  Wotao Yin,et al.  On the convergence of an active-set method for ℓ1 minimization , 2012, Optim. Methods Softw..

[30]  David R. Booth,et al.  Identifying Key Regulatory Genes in the Whole Blood of Septic Patients to Monitor Underlying Immune Dysfunctions , 2013, Shock.