Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment

[1]  J. Rich,et al.  Cancer Stem Cells: The Architects of the Tumor Ecosystem. , 2019, Cell stem cell.

[2]  Piyush B. Gupta,et al.  Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. , 2019, Cell stem cell.

[3]  K. Kurian,et al.  Replication Stress Drives Constitutive Activation of the DNA Damage Response and Radioresistance in Glioblastoma Stem-like Cells. , 2018, Cancer research.

[4]  Andrew R. Morton,et al.  Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. , 2018, Cell stem cell.

[5]  Lisa C. Wallace,et al.  Targeting Glioma Stem Cells through Combined BMI1 and EZH2 Inhibition , 2017, Nature Medicine.

[6]  Richard A. Moore,et al.  Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy , 2017, Nature.

[7]  S. Niclou,et al.  Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A , 2017, British Journal of Cancer.

[8]  Gary D Bader,et al.  ASCL1 Reorganizes Chromatin to Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells. , 2017, Cell stem cell.

[9]  Edward F. Chang,et al.  Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. , 2017, Cancer cell.

[10]  Andreas Deutsch,et al.  CellTrans: An R Package to Quantify Stochastic Cell State Transitions , 2017, Bioinformatics and biology insights.

[11]  Lisa C. Wallace,et al.  Nicotinamide metabolism regulates glioblastoma stem cell maintenance. , 2017, JCI insight.

[12]  P. Scaffidi,et al.  Epigenetics and Cancer Stem Cells: Unleashing, Hijacking, and Restricting Cellular Plasticity , 2017, Trends in cancer.

[13]  A. Morokoff,et al.  Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity , 2017, PloS one.

[14]  Mariella G. Filbin,et al.  Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq , 2017, Science.

[15]  E. Sokol,et al.  Cancer cells exhibit clonal diversity in phenotypic plasticity , 2017, Open Biology.

[16]  R. Verhaak,et al.  GlioVis data portal for visualization and analysis of brain tumor expression datasets. , 2017, Neuro-oncology.

[17]  Gary D Bader,et al.  ASCL1 Reorganizes Chromatin to Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells. , 2017, Cell stem cell.

[18]  A. Tonnel,et al.  Endothelial cells , 1991 .

[19]  Mariella G. Filbin,et al.  Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma , 2016, Nature.

[20]  Robert A. Gatenby,et al.  Stem Cell Plasticity and Niche Dynamics in Cancer Progression , 2016, bioRxiv.

[21]  F. Azuaje,et al.  Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma , 2016, Oncotarget.

[22]  C. Watts,et al.  Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells. , 2015, Cancer research.

[23]  L. Pardo,et al.  CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells , 2015, PloS one.

[24]  J. Rich,et al.  Cancer stem cells in glioblastoma , 2015, Genes & development.

[25]  J. Fowler,et al.  CD15 Expression Does Not Identify a Phenotypically or Genetically Distinct Glioblastoma Population , 2015, Stem cells translational medicine.

[26]  S. Niclou,et al.  Comprehensive Analysis of Glycolytic Enzymes as Therapeutic Targets in the Treatment of Glioblastoma , 2015, PloS one.

[27]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[28]  A. Morokoff,et al.  Coexpression analysis of CD133 and CD44 identifies Proneural and Mesenchymal subtypes of glioblastoma multiforme , 2015, Oncotarget.

[29]  E. Hurt,et al.  Cancer stem cell plasticity and tumor hierarchy. , 2015, World journal of stem cells.

[30]  Heiko Enderling,et al.  Cancer stem cells: small subpopulation or evolving fraction? , 2015, Integrative biology : quantitative biosciences from nano to macro.

[31]  P. Gestraud,et al.  Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes. , 2014, Cell reports.

[32]  S. Niclou,et al.  Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas , 2014, Acta Neuropathologica.

[33]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[34]  Qiulian Wu,et al.  Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy , 2014, Genes & development.

[35]  Simon Kasif,et al.  Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells , 2014, Cell.

[36]  Atique U. Ahmed,et al.  Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy , 2014, Cell Death and Differentiation.

[37]  C. Pinilla,et al.  Identification of Novel Human Leukocyte Antigen‐A*0201‐Restricted, Cytotoxic T Lymphocyte Epitopes on CD133 for Cancer Stem Cell Immunotherapy , 2014, Stem cells translational medicine.

[38]  Susan M. Chang,et al.  Response of primary glioblastoma cells to therapy is patient specific and independent of cancer stem cell phenotype. , 2014, Neuro-oncology.

[39]  David Basanta,et al.  Microenvironmental Variables Must Influence Intrinsic Phenotypic Parameters of Cancer Stem Cells to Affect Tumourigenicity , 2013, bioRxiv.

[40]  E. Lenkiewicz,et al.  Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes , 2013, Acta Neuropathologica.

[41]  Corbin E. Meacham,et al.  Tumour heterogeneity and cancer cell plasticity , 2013, Nature.

[42]  Se Hoon Kim,et al.  Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. , 2013, Cancer cell.

[43]  Andrew E. Sloan,et al.  Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake , 2013, Nature Neuroscience.

[44]  Robert A. Weinberg,et al.  Poised Chromatin at the ZEB1 Promoter Enables Breast Cancer Cell Plasticity and Enhances Tumorigenicity , 2013, Cell.

[45]  Giovanni Broggi,et al.  CD133 Is Essential for Glioblastoma Stem Cell Maintenance , 2013, Stem cells.

[46]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[47]  E. Schröck,et al.  Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells , 2013, Brain : a journal of neurology.

[48]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth following chemotherapy , 2012, Nature.

[49]  J. Wolchok,et al.  Antibody therapy of cancer , 2012, Nature Reviews Cancer.

[50]  E. Lander,et al.  Theory Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells , 2011 .

[51]  C. Beier,et al.  Chemoresistance of glioblastoma cancer stem cells - much more complex than expected , 2011, Molecular Cancer.

[52]  E. Lander,et al.  Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells , 2011, Cell.

[53]  Nuria Lopez-Bigas,et al.  Gitools: Analysis and Visualisation of Genomic Data Using Interactive Heat-Maps , 2011, PloS one.

[54]  R. McLendon,et al.  Acidic stress promotes a glioma stem cell phenotype , 2011, Cell Death and Differentiation.

[55]  S. Niclou,et al.  Critical appraisal of the side population assay in stem cell and cancer stem cell research. , 2011, Cell stem cell.

[56]  B. Campos,et al.  Insight into the complex regulation of CD133 in glioma , 2011, International journal of cancer.

[57]  J. Baselga,et al.  TGF-β Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma. , 2010, Cancer cell.

[58]  S. Morrison,et al.  Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. , 2010, Cancer cell.

[59]  Serban Nacu,et al.  A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. , 2010, Cancer cell.

[60]  J. Engh,et al.  Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α , 2009, Oncogene.

[61]  H. Fine,et al.  SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. , 2009, Cell stem cell.

[62]  L. Denaro,et al.  Hypoxia and HIF1α Repress the Differentiative Effects of BMPs in High‐Grade Glioma , 2009, Stem cells.

[63]  D. Benos,et al.  CD133 Is a Marker of Bioenergetic Stress in Human Glioma , 2008, PloS one.

[64]  S. Morrison,et al.  Efficient tumor formation by single human melanoma cells , 2008, Nature.

[65]  S. Niclou,et al.  A novel eGFP-expressing immunodeficient mouse model to study tumor-host interactions , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[66]  Jian Wang,et al.  CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells , 2008, International journal of cancer.

[67]  Peter Canoll,et al.  Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. , 2008, Neurosurgery.

[68]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[69]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[70]  R. Stupp,et al.  Plasma and Cerebrospinal Fluid Population Pharmacokinetics of Temozolomide in Malignant Glioma Patients , 2004, Clinical Cancer Research.

[71]  D. Krackhardt Graph theoretical dimensions of informal organizations , 1994 .