Realization of a micrometre-sized stochastic heat engine

An optically trapped colloidal particle serves as the first realization of a stochastic thermal engine, extending our understanding of the thermodynamics behind the Carnot cycle to microscopic scales where fluctuations dominate.

[1]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[2]  Udo Seifert,et al.  Efficiency at maximum power: An analytically solvable model for stochastic heat engines , 2007, 0710.4097.

[3]  F. Marchesoni,et al.  Artificial Brownian motors: Controlling transport on the nanoscale , 2008, 0807.1283.

[4]  Massimiliano Esposito,et al.  Efficiency at maximum power of low-dissipation Carnot engines. , 2010, Physical review letters.

[5]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[6]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[7]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[8]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[9]  Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. , 2005, Physical review letters.

[10]  Udo Seifert,et al.  Stochastic thermodynamics: principles and perspectives , 2007, 0710.1187.

[11]  R. Rusconi,et al.  Thermal-lensing measurement of particle thermophoresis in aqueous dispersions , 2004 .

[12]  Joel Moser,et al.  Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes , 2008, Science.

[13]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[14]  J.T.M. van Beek,et al.  Piezoresistive heat engine and refrigerator , 2010, 1001.3170.

[15]  Somchai Wongwises,et al.  A review of solar-powered Stirling engines and low temperature differential Stirling engines , 2003 .

[16]  S. Arduini,et al.  Thermophoresis of DNA determined by microfluidic fluorescence , 2004, The European physical journal. E, Soft matter.

[17]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[18]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[19]  François Gallaire,et al.  Time-resolved temperature rise in a thin liquid film due to laser absorption. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  F. Ritort,et al.  The nonequilibrium thermodynamics of small systems , 2005 .

[21]  Steffi Richter,et al.  Principles and perspectives , 2004, Environmental science and pollution research international.

[22]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[23]  Ken Sekimoto,et al.  Langevin Equation and Thermodynamics , 1998 .