Origin of mound-field landscapes: a multi-proxy approach combining contemporary vegetation, carbon stable isotopes and phytoliths

[1]  Adam Wainwright,et al.  Late Holocene Neotropical agricultural landscapes: phytolith and stable carbon isotope analysis of raised fields from French Guianan coastal savannahs , 2010 .

[2]  T. Streck,et al.  Phytolith transport in soil: A field study using fluorescent labelling , 2010 .

[3]  José Iriarte,et al.  Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia , 2010, Proceedings of the National Academy of Sciences.

[4]  J. Midgley More mysterious mounds: origins of the Brazilian campos de murundus , 2010, Plant and Soil.

[5]  Lucas C. R. Silva,et al.  Deciphering earth mound origins in central Brazil , 2010, Plant and Soil.

[6]  J. Hibberd The evolution of C4 photosynthesis , 2009 .

[7]  J. Iriarte,et al.  Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction , 2009 .

[8]  U. Bloesch Thicket clumps: A characteristic feature of the Kagera savanna landscape, East Africa , 2008 .

[9]  Anne-Béatrice Dufour,et al.  The ade4 Package: Implementing the Duality Diagram for Ecologists , 2007 .

[10]  J. Wynn Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: Implications for paleoecological interpretations of paleosols , 2007 .

[11]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[12]  E. Chacón-Moreno,et al.  MODELING SPATIAL PATTERNS OF PLANT DISTRIBUTION AS A CONSEQUENCE OF HYDROLOGICAL DYNAMIC PROCESSES IN A VENEZUELAN FLOODING SAVANNA MODELO ESPACIAL DE DISTRIBUCIÓN DE PLANTAS COMO CONSECUENCIA DE LA DINÁMICA HIDROLÓGICA EN UNA SABANA INUNDABLE VENEZOLANA , 2007 .

[13]  Deutsche Ausgabe World Reference Base for Soil Resources 2006 , 2007 .

[14]  P. Meir,et al.  Long-term forest–savannah dynamics in the Bolivian Amazon: implications for conservation , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Dolores R. Piperno,et al.  Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists , 2006 .

[16]  C. Stadel Cultivated Landscapes of Native Amazonia and the Andes , 2005 .

[17]  B. Glaser Compound-specific stable-isotope (δ13C) analysis in soil science , 2005 .

[18]  V. Wong,et al.  Rayleigh distillation and the depth profile of 13C/12C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia , 2005 .

[19]  Oskar Hagberg,et al.  More efficient estimation of plant biomass , 2004 .

[20]  Jean-Marie Froidefond,et al.  Mudflats and mud suspension observed from satellite data in French Guiana , 2004 .

[21]  J. Ammons Soil Genesis And Classification, 5TH Edition. , 2004 .

[22]  S. Perelman,et al.  Effects of Camponotus punctulatus ants on plant community composition and soil properties across land-use histories , 2002, Plant Ecology.

[23]  S. Schrader,et al.  Earthworm effects on selected physical and chemical properties of soil aggregates , 1993, Biology and Fertility of Soils.

[24]  J. M. Moore,et al.  Heuweltjies (earth mounds) in the Clanwilliam district, Cape Province, South Africa: 4000-year-old termite nests , 1991, Oecologia.

[25]  DIRECT AND INDIRECT VEGETATION- ENVIRONMENT RELATIONSHIPS IN THE FLOODING SAVANNA OF VENEZUELA RELACIONES DIRECTAS E INDIRECTAS ENTRE LA VEGETACIÓN Y EL AMBIENTE EN LA SABANA INUNDABLE DE VENEZUELA , 2004 .

[26]  R. Sage,et al.  Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants , 2004, Photosynthesis Research.

[27]  J. Skjemstad,et al.  δ13C and δ15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy , 2003 .

[28]  P. Jouquet,et al.  Termite soil preferences and particle selections: strategies related to ecological requirements , 2002, Insectes Sociaux.

[29]  O. J. Reichman,et al.  The role of pocket gophers as subterranean ecosystem engineers , 2002 .

[30]  W. Gates,et al.  Soil Organic Matter Decomposition and Turnover in a Tropical Ultisol: Evidence from δ13C, δ15N and Geochemistry , 2002, Radiocarbon.

[31]  T. Lamaze,et al.  Wild manihot species do not possess C4 photosynthesis. , 2002, Annals of botany.

[32]  E. Kellogg,et al.  A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. , 2001, American journal of botany.

[33]  G. Sarmiento,et al.  Patterns and processes in a seasonally flooded tropical plain: the Apure Llanos, Venezuela , 2001 .

[34]  A. Brauman,et al.  Comparative distribution of organic matter in particle and aggregate size fractions in the mounds of termites with different feeding habits in Senegal : Cubitermes niokoloensis and Macrotermes bellicosus , 2001 .

[35]  Cédric Gaucherel,et al.  Atlas illustré de la Guyane , 2001 .

[36]  J. Ehleringer,et al.  Carbon isotope ratios in belowground carbon cycle processes , 2000 .

[37]  Wolfram Beyschlag,et al.  Linear relationships between aboveground biomass and plant cover in low open herbaceous vegetation , 2000 .

[38]  M. McClaran,et al.  Desert grassland dynamics estimated from carbon isotopes in grass phytoliths and soil organic matter , 2000 .

[39]  T. McCarthy,et al.  The role of biota in the initiation and growth of islands on the floodplain of the Okavango alluvial fan, Botswana , 1998 .

[40]  S. Archer,et al.  δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem , 1998 .

[41]  J. Deckers,et al.  World Reference Base for Soil Resources , 1998 .

[42]  M. Bird,et al.  Variations of δ13C in the surface soil organic carbon pool , 1997 .

[43]  T. Boutton,et al.  Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. , 1996 .

[44]  J. Balesdent,et al.  Measurement of soil organic matter turnover using 13C natural abundance. , 1996 .

[45]  T. Boutton,et al.  Mass spectrometry of soils , 1996 .

[46]  R. Aravena,et al.  The Use of Carbon Isotopes (13C,14C) in Soil to Evaluate Vegetation Changes During the Holocene in Central Brazil , 1996, Radiocarbon.

[47]  M. Leok The use of , 1996 .

[48]  V. Ponce,et al.  Vegetated earthmounds in tropical savannas of Central Brazil: a synthesis. With special reference to the Pantanal do Mato Grosso , 1993 .

[49]  A. Oliveira-Filho Floodplain ‘murundus’ of Central Brazil: evidence for the termite-origin hypothesis , 1992, Journal of Tropical Ecology.

[50]  D. Batten Phytolith analysis. An archaeological and geological perspective , 1991 .

[51]  E. Medina,et al.  Metabolism and distribution of grasses in tropical flooded savannas in Venezuela , 1990, Journal of Tropical Ecology.

[52]  M. Prost Coastal dynamics and chenier sands in French Guiana , 1989 .

[53]  D. Pearsall Phytolith Analysis: An Archaeological and Geological Perspective , 1989, American Antiquity.

[54]  C. Joly,et al.  Identification and distribution of C3 and C4 grasses in open and shaded habitats in São Paulo State, Brazil , 1989 .

[55]  S. Jonasson Evaluation of the point intercept method for the estimation of plant biomass , 1988 .

[56]  G. Cox,et al.  The small stone content of mima-like mounds in the south african cape region: Implications for mound origin , 1987 .

[57]  P. Furley,et al.  The murundus of the cerrado region of Central Brazil , 1986, Journal of Tropical Ecology.

[58]  S. Buol Soil Genesis and Classification , 1980 .

[59]  E. Degens Biogeochemistry of Stable Carbon Isotopes , 1969 .

[60]  J. S. Beard,et al.  The Savanna Vegetation of Northern Tropical America , 1953 .

[61]  H. Craig THE GEOCHEMISTRY OF THE STABLE CARBON ISOTOPES , 1953 .

[62]  M. Bates Climate and Vegetation in the Villavicencio Region of Eastern Colombia , 1948 .