Reilly-type inequalities for p-Laplacian on submanifolds in space forms

[1]  S. Seto,et al.  First eigenvalue of the $p$-Laplacian under integral curvature condition , 2017, 1707.04763.

[2]  A. Mondino,et al.  Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds , 2015, 1505.02061.

[3]  Jing Mao,et al.  Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds , 2015 .

[4]  A. Matei Conformal bounds for the first eigenvalue of the p-Laplacian , 2013 .

[5]  A. Naber,et al.  Sharp estimates on the first eigenvalue of the $$p$$p-Laplacian with negative Ricci lower bound , 2012, 1208.3507.

[6]  Daniele Valtorta Sharp estimate on the first eigenvalue of the p-Laplacian , 2011, 1102.0539.

[7]  Haizhong Li,et al.  Second Eigenvalue of Paneitz Operators and Mean Curvature , 2010, 1010.3104.

[8]  A. Matei First eigenvalue for the p -Laplace operator , 2000 .

[9]  A. E. Soufi,et al.  Une inégalité du type “Reilly” pour les sous-variétés de l'espace hyperbolique , 1992 .

[10]  Shing-Tung Yau,et al.  A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .

[11]  R. Reilly On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space , 1977 .

[12]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[13]  B. Andrews Moduli of continuity, isoperimetric profiles, and multi-point estimates in geometric heat equations , 2014 .

[14]  Ahmad El Soufi,et al.  Second Eigenvalue of Schrödinger Operators¶and Mean Curvature , 2000 .

[15]  Bang-Yen Chen,et al.  Geometry of submanifolds , 1973 .

[16]  S. Chern Minimal submanifolds in a Riemannian manifold , 1968 .