A comparison of parameter choice rules for (cid:2) p - (cid:2) q minimization
暂无分享,去创建一个
[1] F. Sgallari,et al. Automatic fidelity and regularization terms selection in variational image restoration , 2021, BIT Numerical Mathematics.
[2] A. Buccini. Generalized Cross Validation stopping rule for Iterated Tikhonov regularization , 2021, 2021 21st International Conference on Computational Science and Its Applications (ICCSA).
[3] Fiorella Sgallari,et al. ADMM-based residual whiteness principle for automatic parameter selection in super-resolution problems , 2021, ArXiv.
[4] L. Reichel,et al. Generalized cross validation for ℓp-ℓq minimization , 2021, Numerical Algorithms.
[5] Marco Donatelli,et al. Graph Laplacian for image deblurring , 2021, ETNA - Electronic Transactions on Numerical Analysis.
[6] Alessandro Buccini,et al. An ℓp-ℓq minimization method with cross-validation for the restoration of impulse noise contaminated images , 2020, J. Comput. Appl. Math..
[7] L. Reichel,et al. Modulus-based iterative methods for constrained ℓp–ℓq minimization , 2020, Inverse Problems.
[8] Alessandro Buccini,et al. Generalized singular value decomposition with iterated Tikhonov regularization , 2020, J. Comput. Appl. Math..
[9] Omar De la Cruz Cabrera,et al. Large-scale regression with non-convex loss and penalty , 2020, Applied Numerical Mathematics.
[10] F. Sgallari,et al. Residual whiteness principle for parameter-free image restoration , 2020 .
[11] L. Reichel,et al. Generalized Cross Validation for l p-l q Minimization , 2020 .
[12] F. Sgallari,et al. Whiteness Constraints in a Unified Variational Framework for Image Restoration , 2018, Journal of Mathematical Imaging and Vision.
[13] Runyi Yu,et al. Residual Correlation Regularization Based Image Denoising , 2018, IEEE Signal Processing Letters.
[14] L. Reichel,et al. GCV for Tikhonov regularization by partial SVD , 2017 .
[15] F. Sgallari,et al. Majorization–minimization generalized Krylov subspace methods for (cid:2) p – (cid:2) q optimization applied to image restoration , 2017 .
[16] Yann Gousseau,et al. Penalizing local correlations in the residual improves image denoising performance , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).
[17] Lothar Reichel,et al. GCV for Tikhonov regularization via global Golub–Kahan decomposition , 2016, Numer. Linear Algebra Appl..
[18] Lea Fleischer,et al. Regularization of Inverse Problems , 1996 .
[19] Serena Morigi,et al. A Generalized Krylov Subspace Method for ℓp-ℓq Minimization , 2015, SIAM J. Sci. Comput..
[20] Fiorella Sgallari,et al. A generalized Krylov subspace method for l p-l q minimization , 2015 .
[21] Serena Morigi,et al. Variational Image Restoration with Constraints on Noise Whiteness , 2014, Journal of Mathematical Imaging and Vision.
[22] Anthony J. Yezzi,et al. Variational Image Denoising Based on Autocorrelation Whiteness , 2013, SIAM J. Imaging Sci..
[23] Mário A. T. Figueiredo,et al. Parameter Estimation for Blind and Non-Blind Deblurring Using Residual Whiteness Measures , 2013, IEEE Transactions on Image Processing.
[24] S. Kindermann. CONVERGENCE ANALYSIS OF MINIMIZATION-BASED NOISE LEVEL-FRE E PARAMETER CHOICE RULES FOR LINEAR ILL-POSED PROBLEMS , 2011 .
[25] Raymond H. Chan,et al. Half-Quadratic Algorithm for ℓp - ℓq Problems with Applications to TV-ℓ1 Image Restoration and Compressive Sensing , 2011, Efficient Algorithms for Global Optimization Methods in Computer Vision.
[26] Lothar Reichel,et al. A new zero-finder for Tikhonov regularization , 2008 .
[27] Dianne P. O'Leary,et al. Residual periodograms for choosing regularization parameters for ill-posed problems , 2008 .
[28] Jianhong Shen,et al. Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..
[29] P. Hansen,et al. Exploiting Residual Information in the Parameter Choice for Discrete Ill-Posed Problems , 2006 .
[30] R. Snieder. Inverse Problems in Geophysics , 2001 .
[31] Alfred K. Louis,et al. Medical imaging: state of the art and future development , 1992 .
[32] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[33] A. Bakushinskii. Remarks on choosing a regularization parameter using the quasioptimality and ratio criterion , 1985 .
[34] I. Galligani. Optimal Numerical Methods for Direct and Inverse Problems in Hydrology , 1982 .
[35] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[36] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .