Boosting the performance of small autonomous refrigerators via common environmental effects

We explore the possibility of enhancing the performance of small thermal machines by the presence of correlated noise sources. In particular, we study a prototypical model for an autonomous quantum refrigerator comprised by three qubits coupled to thermal reservoirs at different temperatures. Our results show that engineering the coupling to the reservoirs to act as common environments lead to relevant improvements in the performance. The enhancements arrive to almost double the cooling power of the original fridge without compromising its efficiency. The greater enhancements are obtained when the refrigerator may benefit from the presence of a decoherence-free subspace. The influence of coherent effects in the dissipation due to one- and two-spin correlated processes is also examined by comparison with an equivalent incoherent yet correlated model of dissipation.

[1]  J. E. Geusic,et al.  Three Level Spin Refrigeration and Maser Action at 1500 mc/sec , 1959 .

[2]  Paul Erker,et al.  Autonomous quantum clocks: how thermodynamics limits our ability to measure time , 2016, 1609.06704.

[3]  E. O. Schulz-DuBois,et al.  Three-Level Masers as Heat Engines , 1959 .

[4]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[5]  J. Koski,et al.  On-Chip Maxwell's Demon as an Information-Powered Refrigerator. , 2015, Physical review letters.

[6]  S. Masuda,et al.  Quantum-circuit refrigerator , 2016, Nature Communications.

[7]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[8]  Paul Skrzypczyk,et al.  Virtual qubits, virtual temperatures, and the foundations of thermodynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[10]  Ronnie Kosloff,et al.  Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures , 2015 .

[11]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[12]  Emilio Hernández-García,et al.  Synchronization, quantum correlations and entanglement in oscillator networks , 2013, Scientific Reports.

[13]  Gleb Maslennikov,et al.  Quantum absorption refrigerator with trapped ions , 2017, Nature Communications.

[14]  Kavan Modi,et al.  Quantacell: powerful charging of quantum batteries , 2015, 1503.07005.

[15]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[16]  Thomas Zell,et al.  Distance dependence of entanglement generation via a bosonic heat bath. , 2008, Physical review letters.

[17]  Franco Nori,et al.  Quantum thermodynamic cycles and quantum heat engines. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Jonatan Bohr Brask,et al.  Quantum Thermal Machine as a Thermometer. , 2017, Physical review letters.

[19]  F. Plastina,et al.  Spontaneous synchronization and quantum correlation dynamics of open spin systems , 2013, 1305.1816.

[20]  J. Pekola,et al.  Correlated versus uncorrelated noise acting on a quantum refrigerator , 2017, 1703.10507.

[21]  Ronnie Kosloff,et al.  The local approach to quantum transport may violate the second law of thermodynamics , 2014, 1402.3825.

[22]  N. Brunner,et al.  Small quantum absorption refrigerator with reversed couplings. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  G. Kurizki,et al.  Cooperative many-body enhancement of quantum thermal machine power , 2018, New Journal of Physics.

[24]  Pere Colet,et al.  Quantum correlations and mutual synchronization , 2011, 1105.4129.

[25]  Paul Skrzypczyk,et al.  The smallest refrigerators can reach maximal efficiency , 2010, 1009.0865.

[26]  J M Gordon,et al.  Quantum thermodynamic cooling cycle. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Ronnie Kosloff,et al.  The Quantum Harmonic Otto Cycle , 2016, Entropy.

[28]  Michele Campisi,et al.  High-Power Collective Charging of a Solid-State Quantum Battery. , 2017, Physical review letters.

[29]  Susana F. Huelga,et al.  Markovian master equations: a critical study , 2010, 1006.4666.

[30]  V. Scarani,et al.  Refrigeration beyond weak internal coupling. , 2018, Physical review. E.

[31]  J. E. Geusic,et al.  Quantum Equivalent of the Carnot Cycle , 1967 .

[32]  Claudia Benedetti,et al.  Microscopic description for the emergence of collective dissipation in extended quantum systems , 2016, Scientific Reports.

[33]  H. Jürgensen Synchronization , 2021, Inf. Comput..

[34]  Gerardo Adesso,et al.  Testing the Validity of the 'Local' and 'Global' GKLS Master Equations on an Exactly Solvable Model , 2017, Open Syst. Inf. Dyn..

[35]  Davide Venturelli,et al.  Minimal self-contained quantum refrigeration machine based on four quantum dots. , 2012, Physical review letters.

[36]  Jonatan Bohr Brask,et al.  Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[38]  G'eraldine Haack,et al.  Markovian master equations for quantum thermal machines: local versus global approach , 2017, 1707.09211.

[39]  G. Morigi,et al.  Supercooling of Atoms in an Optical Resonator. , 2015, Physical review letters.

[40]  Marcus Huber,et al.  Autonomous quantum thermal machine for generating steady-state entanglement , 2015, 1504.00187.

[41]  Z. Man,et al.  Improving autonomous thermal entanglement generation using a common reservoir , 2017, Physica Scripta.

[42]  Ruggero Vasile,et al.  Spectral origin of non-Markovian open-system dynamics: A finite harmonic model without approximations , 2014 .

[43]  H. Qian,et al.  Stochastic theory of nonequilibrium steady states. Part II: Applications in chemical biophysics , 2012 .

[44]  Rosario Fazio,et al.  Absorption refrigerators based on Coulomb-coupled single-electron systems , 2018, Physical Review B.

[45]  Ian A. Walmsley,et al.  Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines. , 2017, Physical review letters.

[46]  Gerardo Adesso,et al.  Performance bound for quantum absorption refrigerators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  R. Aguado,et al.  Entanglement between charge qubits induced by a common dissipative environment , 2007, 0710.3576.

[48]  J. Pekola,et al.  Otto refrigerator based on a superconducting qubit: Classical and quantum performance , 2016, 1610.02776.

[49]  M. Plenio,et al.  Non-additive dissipation in open quantum networks out of equilibrium , 2017, 1708.05574.

[50]  Marcus Huber,et al.  Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction , 2016, 1607.05218.

[51]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[52]  Javier Prior,et al.  Coherence-assisted single-shot cooling by quantum absorption refrigerators , 2015, 1504.01593.

[53]  J. Pekola,et al.  Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments , 2014, 1412.0898.

[54]  Dmitri V. Voronine,et al.  Photosynthetic reaction center as a quantum heat engine , 2013, Proceedings of the National Academy of Sciences.

[55]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[56]  Yi-Xin Chen,et al.  Quantum refrigerator driven by current noise , 2011, 1104.2363.

[57]  Javier Prior,et al.  Realising a quantum absorption refrigerator with an atom-cavity system , 2016, 1603.02082.

[58]  S. Huelga,et al.  Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture. , 2014, The Journal of chemical physics.

[59]  M. Dalmonte,et al.  Boundary Time Crystals. , 2017, Physical Review Letters.

[60]  Ronnie Kosloff,et al.  Quantum absorption refrigerator. , 2011, Physical review letters.

[61]  Gonzalo Manzano Entropy production and fluctuations in a Maxwell’s refrigerator with squeezing , 2017, The European Physical Journal Special Topics.

[62]  Jonathan Oppenheim,et al.  Autonomous Quantum Machines and Finite-Sized Clocks , 2016, Annales Henri Poincaré.

[63]  Ronnie Kosloff,et al.  Quantum heat engines and refrigerators: continuous devices. , 2013, Annual review of physical chemistry.

[64]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[65]  Marcus Huber,et al.  Unifying Paradigms of Quantum Refrigeration: A Universal and Attainable Bound on Cooling. , 2019, Physical review letters.

[66]  H. Kimble,et al.  Quantum matter built from nanoscopic lattices of atoms and photons , 2018, Rochester Conference on Coherence and Quantum Optics (CQO-11).

[67]  C L Latune,et al.  Quantum coherence, many-body correlations, and non-thermal effects for autonomous thermal machines , 2018, Scientific Reports.

[68]  S. Dattagupta Stochastic Thermodynamics , 2021, Resonance.

[69]  Franco Nori,et al.  One Photon Can Simultaneously Excite Two or More Atoms. , 2016, Physical review letters.

[70]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[71]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[72]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[73]  K. Southwell Quantum coherence , 2008, Nature.

[74]  Giuliano Benenti,et al.  Fundamental aspects of steady-state conversion of heat to work at the nanoscale , 2016, 1608.05595.

[75]  Marcus Huber,et al.  Unifying paradigms of quantum refrigeration: Fundamental limits of cooling and associated work costs. , 2017, Physical review. E.

[76]  Dissipation and decoherence in a quantum register , 1998 .

[77]  M. Cattaneo,et al.  Local vs global master equation with common and separate baths: superiority of the global approach in partial secular approximation , 2019, 1906.08893.

[78]  J. Parrondo,et al.  Autonomous thermal machine for amplification and control of energetic coherence. , 2017, Physical review. E.

[79]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[80]  Gian Paolo Beretta,et al.  Time–Energy and Time–Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations , 2019, Entropy.

[81]  Michele Campisi,et al.  The power of a critical heat engine , 2016, Nature Communications.

[82]  W. Marsden I and J , 2012 .

[83]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[84]  H. Quan Quantum thermodynamic cycles and quantum heat engines. II. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  Paul Skrzypczyk,et al.  Entanglement enhances cooling in microscopic quantum refrigerators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Gershon Kurizki,et al.  Thermodynamics of quantum systems under dynamical control , 2015, 1503.01195.

[87]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[88]  Paul Skrzypczyk,et al.  Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource. , 2016, Physical review. E.

[89]  Daniel A. Lidar,et al.  Review of Decoherence‐Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling , 2012, 1208.5791.

[90]  A. S. Trushechkin,et al.  Perturbative treatment of inter-site couplings in the local description of open quantum networks , 2015, 1509.05754.

[91]  D. Segal,et al.  Qubit absorption refrigerator at strong coupling , 2017, 1709.02835.

[92]  R. Kosloff,et al.  Quantum Equivalence and Quantum Signatures in Heat Engines , 2015, 1502.06592.

[93]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[94]  Mart'i Perarnau-Llobet,et al.  Collective operations can extremely reduce work fluctuations , 2018, New Journal of Physics.

[95]  J. Paz,et al.  Dynamics of the entanglement between two oscillators in the same environment. , 2008, Physical review letters.

[96]  Roberta Zambrini,et al.  Avoiding dissipation in a system of three quantum harmonic oscillators , 2013, 1304.2200.