New benzene absorption cross sections in the VUV, relevance for Titan's upper atmosphere

[1]  B. Bézard,et al.  Seasonal variations in Titan's middle atmosphere during the northern spring derived from Cassini/CIRS observations , 2015 .

[2]  V. Krasnopolsky Chemical composition of Titan’s atmosphere and ionosphere: Observations and the photochemical model , 2014 .

[3]  F. Capalbo Titan's upper atmosphere composition and temperature from Cassini-ultraviolet imaging spectrograph stellar and solar occultations , 2013 .

[4]  J. Wahlund,et al.  The thermal structure of Titan's upper atmosphere, I: Temperature profiles from Cassini INMS observations , 2013 .

[5]  G. Holsclaw,et al.  SOLAR OCCULTATION BY TITAN MEASURED BY CASSINI/UVIS , 2013 .

[6]  R. West,et al.  The mesosphere and lower thermosphere of Titan revealed by Cassini/UVIS stellar occultations , 2011 .

[7]  R. Yelle,et al.  The thermal structure of Titan’s upper atmosphere, II: Energetics , 2011 .

[8]  Conor A. Nixon,et al.  Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission II: Aerosol extinction profiles in the 600–1420 cm−1 spectral range , 2010 .

[9]  Daniel Gautier,et al.  Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini‐Huygens probe gas chromatograph mass spectrometer experiment , 2010 .

[10]  Hiroshi Imanaka,et al.  Formation of nitrogenated organic aerosols in the Titan upper atmosphere , 2010, Proceedings of the National Academy of Sciences.

[11]  C. McKay,et al.  The photochemical products of benzene in Titan’s upper atmosphere , 2010 .

[12]  Conor A. Nixon,et al.  Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles , 2010 .

[13]  D. Gell,et al.  INMS-derived composition of Titan's upper atmosphere: Analysis methods and model comparison , 2009 .

[14]  Nicolas Fray,et al.  Sublimation of ices of astrophysical interest: A bibliographic review , 2009 .

[15]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[16]  Ann Carine Vandaele,et al.  UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene , 2009 .

[17]  V. Krasnopolsky A photochemical model of Titan's atmosphere and ionosphere , 2009 .

[18]  J. Cui Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements in the Closed Source Neutral mode , 2009 .

[19]  Craig B. Markwardt,et al.  Non-linear Least Squares Fitting in IDL with MPFIT , 2009, 0902.2850.

[20]  J. Waite,et al.  Coupled ion and neutral rotating model of Titan's upper atmosphere , 2008 .

[21]  Roger V. Yelle,et al.  Formation and distribution of benzene on Titan , 2008 .

[22]  M. Stevens,et al.  Titan airglow spectra from the Cassini Ultraviolet Imaging Spectrograph: FUV disk analysis , 2008 .

[23]  M. Stevens,et al.  Titan airglow spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV analysis , 2007 .

[24]  Roger V. Yelle,et al.  Ion chemistry and N-containing molecules in Titan's upper atmosphere , 2007 .

[25]  Michel Dobrijevic,et al.  Photochemical kinetics uncertainties in modeling Titan's atmosphere: First consequences , 2007 .

[26]  G. Orton,et al.  The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra , 2007 .

[27]  Yuk L. Yung,et al.  Photolytically Generated Aerosols in the Mesosphere and Thermosphere of Titan , 2007, 0705.0145.

[28]  Athena Coustenis,et al.  Vertical abundance profiles of hydrocarbons in Titan's atmosphere at 15° S and 80° N retrieved from Cassini/CIRS spectra , 2007 .

[29]  J. Doussin,et al.  Experimental and theoretical study of hydrocarbon photochemistry applied to Titan stratosphere , 2006 .

[30]  D. Fussen,et al.  Stellar occultations observed by SPICAM on Mars Express , 2006 .

[31]  S. Debei,et al.  In situ measurements of the physical characteristics of Titan's environment , 2005, Nature.

[32]  Bruce Block,et al.  Ion Neutral Mass Spectrometer Results from the First Flyby of Titan , 2005, Science.

[33]  R. West,et al.  The Cassini UVIS Stellar Probe of the Titan Atmosphere , 2005, Science.

[34]  S. Lebonnois Benzene and aerosol production in Titan and Jupiter's atmospheres: a sensitivity study , 2005 .

[35]  H. Keller,et al.  The Cassini Ultraviolet Imaging Spectrograph Investigation , 2004 .

[36]  D. Strobel,et al.  New perspectives on Titan's upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations , 2004 .

[37]  S. Atreya,et al.  Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere , 2004 .

[38]  T. Encrenaz,et al.  Titan’s atmosphere from ISO mid-infrared spectroscopy , 2003 .

[39]  A. Coustenis,et al.  Mechanisms for the formation of benzene in the atmosphere of Titan , 2003 .

[40]  C. McKay,et al.  Transition from gaseous compounds to aerosols in Titan's atmosphere , 2002 .

[41]  C. E. Brion,et al.  Dipole (e,e+ion) spectroscopic studies of benzene: absolute oscillator strengths for molecular and dissociative photoionization in the VUV and soft X-ray regions , 2002 .

[42]  Helmut Feuchtgruber,et al.  Benzene on the Giant Planets , 2001 .

[43]  Ana Heras,et al.  Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618 , 2001 .

[44]  David Coscia,et al.  Experimental laboratory simulation of Titan's atmosphere: aerosols and gas phase , 1999 .

[45]  D. Holland,et al.  A photoabsorption, photodissociation and photoelectron spectroscopy study of C6H6 and C6D6 , 1998 .

[46]  William H. Press,et al.  Numerical recipes in Fortran 90: the art of parallel scientific computing, 2nd Edition , 1996, Fortran numerical recipes.

[47]  Jun Shan,et al.  Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106–295 nm , 1992 .

[48]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[49]  J. R. Esmond,et al.  High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2 , 1992 .

[50]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[51]  C. Otis,et al.  Higher excited states of benzene: Symmetry assignments of six gerade Rydberg series by four‐photon absorption spectroscopy , 1985 .

[52]  M. W. Williams,et al.  Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies , 1984 .

[53]  F. Raulin,et al.  Organic syntheses from CH4−N2 atmospheres: Implications for Titan , 1982, Origins of life.

[54]  E. Pantos,et al.  The extinction coefficient of benzene vapor in the region 4.6 to 36 eV , 1978 .

[55]  L. Orgel,et al.  Cyanoacetylene in Prebiotic Synthesis , 1966, Science.

[56]  P. Wilkinson ABSORPTION SPECTRA OF BENZENE AND BENZENE-d6 IN THE VACUUM ULTRAVIOLET , 1956 .

[57]  L. W. Pickett,et al.  Vacuum Ultraviolet Absorption Spectra of Cyclic Compounds. I. Cyclohexane, Cyclohexene, Cyclopentane, Cyclopentene and Benzene1 , 1951 .

[58]  W. Price,et al.  The absorption spectra of benzene derivatives in the vacuum ultra-violet. I , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[59]  E. Teller,et al.  Note on the Ultraviolet Absorption Systems of Benzene Vapor , 1940 .

[60]  E. P. Carr,et al.  An Electronic Transition of the Rydberg Series Type in the Absorption Spectra of Hydrocarbons , 1939 .

[61]  W. Price The Far Ultraviolet Absorption Spectra and Ionization Potentials of H2O and H2S , 1936 .

[62]  W. Price,et al.  The Far Ultraviolet Absorption Spectra and Ionization Potentials of C6H6 and C6D6 , 1935 .

[63]  R. Norrish The absorption spectra of benzene derivatives in the vacuum ultra-violet , 2017 .

[64]  S. Klippenstein,et al.  RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN , 2011 .

[65]  J. Hunter Waite,et al.  Titan from Cassini-Huygens , 2010 .

[66]  A. Jolly,et al.  Temperature-dependent photoabsorption cross-sections of cyanoacetylene and diacetylene in the mid- and vacuum-UV: Application to Titan's atmosphere , 2009 .

[67]  A. Coustenis,et al.  Coupling photochemistry with haze formation in Titan's atmosphere, Part II: Results and validation with Cassini/Huygens data , 2008 .

[68]  S. K. Atreyab,et al.  Chemical sources of haze formation in Titan ’ s atmosphere , 2003 .

[69]  J. Edson,et al.  Evolution of stratification over the New England shelf during the Coastal Mixing and Optics study, August 1996-June 1997 , 2003 .

[70]  D. Gautier,et al.  Chemical Composition of Titan's Atmosphere , 1997 .

[71]  W. Press,et al.  In: Numerical Recipes in Fortran 90 , 1996 .

[72]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[73]  E. Koch,et al.  Vacuum ultra-violet and electron energy loss spectroscopy of gaseous and solid organic compounds☆ , 1976 .

[74]  E. Koch,et al.  Optical absorption of benzene vapour for photon energies from 6 eV to 35 eV , 1972 .

[75]  G. Herzberg,et al.  Molecular spectra and molecular structure. Vol.3: Electronic spectra and electronic structure of polyatomic molecules , 1966 .

[76]  W. Price,et al.  Oscillator strengths of the vacuum ultra-violet absorption bands of benzene and ethylene , 1955 .

[77]  W. Price,et al.  The absorption spectra of some substituted benzenes and naphthalenes in the vacuum ultra-violet , 1950 .

[78]  J. Lennard-jones,et al.  Molecular Spectra and Molecular Structure , 1929, Nature.

[79]  Michel Guélin,et al.  UvA-DARE ( Digital Academic Repository ) Infrared Space Observatory ' s Discovery of C 4 H 2 , C 6 H 2 and Benzene in CRL 618 , 2022 .