Statistical dynamics of continuous systems: perturbative and approximative approaches
暂无分享,去创建一个
Dmitri Finkelshtein | Yuri Kondratiev | Oleksandr Kutoviy | D. Finkelshtein | Y. Kondratiev | O. Kutoviy
[1] Dmitri Finkelshtein,et al. Semigroup approach to birth-and-death stochastic dynamics in continuum , 2011, 1109.5094.
[2] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[3] Hans-Otto Georgii,et al. Canonical and grand canonical Gibbs states for continuum systems , 1976 .
[4] P. Donnelly. MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .
[5] Nancy L. Garcia,et al. Spatial birth and death processes as solutions of stochastic equations , 2006 .
[6] Nicolas Fournier,et al. A microscopic probabilistic description of a locally regulated population and macroscopic approximations , 2004, math/0503546.
[7] Grigori Olshanski,et al. POINT PROCESSES AND THE INFINITE SYMMETRIC GROUP , 1998 .
[8] Yuri G. Kondratiev,et al. Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics , 2006 .
[9] Michael E. Fisher,et al. THE STABILITY OF MANY-PARTICLE SYSTEMS , 1966 .
[10] Oleksandr Kutoviy,et al. On the metrical properties of the configuration space , 2006 .
[11] J. Mecke,et al. Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse , 1968 .
[12] Yuri G. Kondratiev,et al. Binary jumps in continuum. I. Equilibrium processes and their scaling limits , 2011, 1101.4765.
[13] Grigori Olshanski,et al. Giambelli compatible point processes , 2006, Adv. Appl. Math..
[14] François Trèves. Ovcyannikov theorem and hyperdifferential operators , 1968 .
[15] Otso Ovaskainen,et al. A mathematical framework for the analysis of spatial-temporal point processes , 2013 .
[16] D. Ruelle. Statistical Mechanics: Rigorous Results , 1999 .
[17] Tobias Kuna,et al. HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .
[18] Mathew D. Penrose,et al. Existence and spatial limit theorems for lattice and continuum particle systems , 2008 .
[19] B. Bolker,et al. Spatial Moment Equations for Plant Competition: Understanding Spatial Strategies and the Advantages of Short Dispersal , 1999, The American Naturalist.
[20] Nancy L. Garcia,et al. Birth and death processes as projections of higher-dimensional Poisson processes , 1995, Advances in Applied Probability.
[21] Otso Ovaskainen,et al. A general mathematical framework for the analysis of spatiotemporal point processes , 2013, Theoretical Ecology.
[22] Dmitri Finkelshtein,et al. Individual Based Model with Competition in Spatial Ecology , 2008, SIAM J. Math. Anal..
[23] A. Lenard,et al. States of classical statistical mechanical systems of infinitely many particles. I , 1975 .
[24] T. Liggett. Interacting Particle Systems , 1985 .
[25] Dmitri Finkelshtein,et al. Operator approach to Vlasov scaling for some models of spatial ecology , 2011 .
[26] A. Lenard,et al. States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .
[27] R. Phillips,et al. The adjoint semi-group , 1955 .
[28] David Ruelle,et al. Superstable interactions in classical statistical mechanics , 1970 .
[29] D. Finkelshtein,et al. Measures on two-component configuration spaces , 2007, 0712.1401.
[30] R. Nagel,et al. One-parameter Semigroups of Positive Operators , 1986 .
[31] E. Lytvynov,et al. Equilibrium Kawasaki dynamics of continuous particle systems , 2005 .
[32] Simon A. Levin,et al. Complex adaptive systems: Exploring the known, the unknown and the unknowable , 2002 .
[33] M. Safonov,et al. The abstract cauchy‐kovalevskaya theorem in a weighted banach space , 1995 .
[34] Dmitri Finkelshtein,et al. Establishment and Fecundity in Spatial Ecological Models: Statistical Approach and Kinetic Equations , 2013 .
[35] Nancy L. Garcia,et al. Spatial Point Processes and the Projection Method , 2008 .
[36] Yuri G. Kondratiev,et al. Glauber Dynamics in the Continuum via Generating Functionals Evolution , 2012 .
[37] Dmitri Finkelshtein,et al. An approximative approach for construction of the Glauber dynamics in continuum , 2009 .
[38] Yuri G. Kondratiev,et al. Kawasaki dynamics in the continuum via generating functionals evolution , 2012 .
[39] E. Lytvynov,et al. Glauber dynamics of continuous particle systems , 2003, math/0306252.
[40] Jan van Neerven,et al. The Adjoint of a Semigroup of Linear Operators , 1992 .
[41] Ulf Dieckmann,et al. Relaxation Projections and the Method of Moments , 1999 .
[42] Yu. M. Sukhov,et al. Dynamical Systems of Statistical Mechanics , 1989 .
[43] Yuri G. Kondratiev,et al. Markov evolutions and hierarchical equations in the continuum. II: Multicomponent systems , 2013 .
[44] G. Olshanski,et al. Distributions on Partitions, Point Processes,¶ and the Hypergeometric Kernel , 1999, math/9904010.
[45] Yuri Kondratiev,et al. CORRELATION FUNCTIONS AND INVARIANT MEASURES IN CONTINUOUS CONTACT MODEL , 2008 .
[46] B. Bolker,et al. Using Moment Equations to Understand Stochastically Driven Spatial Pattern Formation in Ecological Systems , 1997, Theoretical population biology.
[47] Yuri Kondratiev,et al. One-Particle Subspace of the Glauber Dynamics Generator for Continuous Particle Systems , 2004 .
[48] Grigori Olshanski,et al. Representation Theory and Random Point Processes , 2004, math/0409333.
[49] Yuri Kozitsky,et al. Glauber Dynamics in Continuum: A Constructive Approach to Evolution of States , 2011 .
[50] A. Rényi. Remarks on the Poisson process , 1967 .
[51] Hans Zessin,et al. Integral and Differential Characterizations of the GIBBS Process , 1979 .
[52] E. Lytvynov,et al. On a spectral representation for correlation measures in configuration space analysis , 2006, math/0608343.
[53] Sergio Albeverio,et al. Analysis and Geometry on Configuration Spaces: The Gibbsian Case☆ , 1998 .
[54] D. W. Stroock,et al. Nearest neighbor birth and death processes on the real line , 1978 .
[55] Dmitri Finkelshtein. Functional evolutions for homogeneous stationary death-immigration spatial dynamics , 2011 .
[56] Yuri Kozitsky,et al. Kawasaki Dynamics in Continuum: Micro- and Mesoscopic Descriptions , 2011, 1109.4754.
[57] H. Lotz,et al. Uniform convergence of operators onL∞ and similar spaces , 1985 .
[58] Yuri Kondratiev,et al. On non-equilibrium stochastic dynamics for interacting particle systems in continuum , 2008 .
[59] R. Keener,et al. Distributions on Partitions , 1987 .
[60] T M Li Ge Te. Interacting Particle Systems , 2013 .
[61] Dmitri Finkelshtein,et al. Correlation functions evolution for the Glauber dynamics in continuum , 2011 .
[62] Yuri Kondratiev,et al. Nonequilibrium Glauber-type dynamics in continuum , 2006 .
[63] Sergio Albeverio,et al. Analysis and Geometry on Configuration Spaces , 1998 .
[64] A. Lenard,et al. Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .
[65] Dmitri Finkelshtein,et al. Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit , 2011 .
[66] D. L. Finkelshtein,et al. On two-component contact model in continuum with one independent component , 2007 .
[67] Filippo Cesi,et al. The spectral gap for a Glauber-type dynamics in a continuous gas☆ , 2002 .
[68] Ulf Dieckmann,et al. On moment closures for population dynamics in continuous space. , 2004, Journal of theoretical biology.
[69] Yuri G. Kondratiev,et al. Markov evolutions and hierarchical equations in the continuum. I: one-component systems , 2007, 0707.0619.
[70] Amnon Pazy,et al. Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.
[71] Dmitri Finkelshtein,et al. Vlasov scaling for the Glauber dynamics in continuum , 2010 .
[72] S. Ethier,et al. Markov Processes: Characterization and Convergence , 2005 .
[73] N. N. Bogolyubov,et al. Problems of a Dynamical Theory in Statistical Physics , 1959 .
[74] C. Preston. Spatial birth and death processes , 1975, Advances in Applied Probability.
[75] T. Liggett,et al. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .
[76] G. Olshanski,et al. Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes , 2001, math/0109194.