Statistical dynamics of continuous systems: perturbative and approximative approaches

We discuss general concept of Markov statistical dynamics in the continuum. For a class of spatial birth-and-death models, we develop a perturbative technique for the construction of statistical dynamics. Particular examples of such systems are considered. For the case of Glauber type dynamics in the continuum we describe a Markov chain approximation approach that gives more detailed information about statistical evolution in this model.

[1]  Dmitri Finkelshtein,et al.  Semigroup approach to birth-and-death stochastic dynamics in continuum , 2011, 1109.5094.

[2]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[3]  Hans-Otto Georgii,et al.  Canonical and grand canonical Gibbs states for continuum systems , 1976 .

[4]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[5]  Nancy L. Garcia,et al.  Spatial birth and death processes as solutions of stochastic equations , 2006 .

[6]  Nicolas Fournier,et al.  A microscopic probabilistic description of a locally regulated population and macroscopic approximations , 2004, math/0503546.

[7]  Grigori Olshanski,et al.  POINT PROCESSES AND THE INFINITE SYMMETRIC GROUP , 1998 .

[8]  Yuri G. Kondratiev,et al.  Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics , 2006 .

[9]  Michael E. Fisher,et al.  THE STABILITY OF MANY-PARTICLE SYSTEMS , 1966 .

[10]  Oleksandr Kutoviy,et al.  On the metrical properties of the configuration space , 2006 .

[11]  J. Mecke,et al.  Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse , 1968 .

[12]  Yuri G. Kondratiev,et al.  Binary jumps in continuum. I. Equilibrium processes and their scaling limits , 2011, 1101.4765.

[13]  Grigori Olshanski,et al.  Giambelli compatible point processes , 2006, Adv. Appl. Math..

[14]  François Trèves Ovcyannikov theorem and hyperdifferential operators , 1968 .

[15]  Otso Ovaskainen,et al.  A mathematical framework for the analysis of spatial-temporal point processes , 2013 .

[16]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[17]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[18]  Mathew D. Penrose,et al.  Existence and spatial limit theorems for lattice and continuum particle systems , 2008 .

[19]  B. Bolker,et al.  Spatial Moment Equations for Plant Competition: Understanding Spatial Strategies and the Advantages of Short Dispersal , 1999, The American Naturalist.

[20]  Nancy L. Garcia,et al.  Birth and death processes as projections of higher-dimensional Poisson processes , 1995, Advances in Applied Probability.

[21]  Otso Ovaskainen,et al.  A general mathematical framework for the analysis of spatiotemporal point processes , 2013, Theoretical Ecology.

[22]  Dmitri Finkelshtein,et al.  Individual Based Model with Competition in Spatial Ecology , 2008, SIAM J. Math. Anal..

[23]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. I , 1975 .

[24]  T. Liggett Interacting Particle Systems , 1985 .

[25]  Dmitri Finkelshtein,et al.  Operator approach to Vlasov scaling for some models of spatial ecology , 2011 .

[26]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[27]  R. Phillips,et al.  The adjoint semi-group , 1955 .

[28]  David Ruelle,et al.  Superstable interactions in classical statistical mechanics , 1970 .

[29]  D. Finkelshtein,et al.  Measures on two-component configuration spaces , 2007, 0712.1401.

[30]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[31]  E. Lytvynov,et al.  Equilibrium Kawasaki dynamics of continuous particle systems , 2005 .

[32]  Simon A. Levin,et al.  Complex adaptive systems: Exploring the known, the unknown and the unknowable , 2002 .

[33]  M. Safonov,et al.  The abstract cauchy‐kovalevskaya theorem in a weighted banach space , 1995 .

[34]  Dmitri Finkelshtein,et al.  Establishment and Fecundity in Spatial Ecological Models: Statistical Approach and Kinetic Equations , 2013 .

[35]  Nancy L. Garcia,et al.  Spatial Point Processes and the Projection Method , 2008 .

[36]  Yuri G. Kondratiev,et al.  Glauber Dynamics in the Continuum via Generating Functionals Evolution , 2012 .

[37]  Dmitri Finkelshtein,et al.  An approximative approach for construction of the Glauber dynamics in continuum , 2009 .

[38]  Yuri G. Kondratiev,et al.  Kawasaki dynamics in the continuum via generating functionals evolution , 2012 .

[39]  E. Lytvynov,et al.  Glauber dynamics of continuous particle systems , 2003, math/0306252.

[40]  Jan van Neerven,et al.  The Adjoint of a Semigroup of Linear Operators , 1992 .

[41]  Ulf Dieckmann,et al.  Relaxation Projections and the Method of Moments , 1999 .

[42]  Yu. M. Sukhov,et al.  Dynamical Systems of Statistical Mechanics , 1989 .

[43]  Yuri G. Kondratiev,et al.  Markov evolutions and hierarchical equations in the continuum. II: Multicomponent systems , 2013 .

[44]  G. Olshanski,et al.  Distributions on Partitions, Point Processes,¶ and the Hypergeometric Kernel , 1999, math/9904010.

[45]  Yuri Kondratiev,et al.  CORRELATION FUNCTIONS AND INVARIANT MEASURES IN CONTINUOUS CONTACT MODEL , 2008 .

[46]  B. Bolker,et al.  Using Moment Equations to Understand Stochastically Driven Spatial Pattern Formation in Ecological Systems , 1997, Theoretical population biology.

[47]  Yuri Kondratiev,et al.  One-Particle Subspace of the Glauber Dynamics Generator for Continuous Particle Systems , 2004 .

[48]  Grigori Olshanski,et al.  Representation Theory and Random Point Processes , 2004, math/0409333.

[49]  Yuri Kozitsky,et al.  Glauber Dynamics in Continuum: A Constructive Approach to Evolution of States , 2011 .

[50]  A. Rényi Remarks on the Poisson process , 1967 .

[51]  Hans Zessin,et al.  Integral and Differential Characterizations of the GIBBS Process , 1979 .

[52]  E. Lytvynov,et al.  On a spectral representation for correlation measures in configuration space analysis , 2006, math/0608343.

[53]  Sergio Albeverio,et al.  Analysis and Geometry on Configuration Spaces: The Gibbsian Case☆ , 1998 .

[54]  D. W. Stroock,et al.  Nearest neighbor birth and death processes on the real line , 1978 .

[55]  Dmitri Finkelshtein Functional evolutions for homogeneous stationary death-immigration spatial dynamics , 2011 .

[56]  Yuri Kozitsky,et al.  Kawasaki Dynamics in Continuum: Micro- and Mesoscopic Descriptions , 2011, 1109.4754.

[57]  H. Lotz,et al.  Uniform convergence of operators onL∞ and similar spaces , 1985 .

[58]  Yuri Kondratiev,et al.  On non-equilibrium stochastic dynamics for interacting particle systems in continuum , 2008 .

[59]  R. Keener,et al.  Distributions on Partitions , 1987 .

[60]  T M Li Ge Te Interacting Particle Systems , 2013 .

[61]  Dmitri Finkelshtein,et al.  Correlation functions evolution for the Glauber dynamics in continuum , 2011 .

[62]  Yuri Kondratiev,et al.  Nonequilibrium Glauber-type dynamics in continuum , 2006 .

[63]  Sergio Albeverio,et al.  Analysis and Geometry on Configuration Spaces , 1998 .

[64]  A. Lenard,et al.  Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .

[65]  Dmitri Finkelshtein,et al.  Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit , 2011 .

[66]  D. L. Finkelshtein,et al.  On two-component contact model in continuum with one independent component , 2007 .

[67]  Filippo Cesi,et al.  The spectral gap for a Glauber-type dynamics in a continuous gas☆ , 2002 .

[68]  Ulf Dieckmann,et al.  On moment closures for population dynamics in continuous space. , 2004, Journal of theoretical biology.

[69]  Yuri G. Kondratiev,et al.  Markov evolutions and hierarchical equations in the continuum. I: one-component systems , 2007, 0707.0619.

[70]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[71]  Dmitri Finkelshtein,et al.  Vlasov scaling for the Glauber dynamics in continuum , 2010 .

[72]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[73]  N. N. Bogolyubov,et al.  Problems of a Dynamical Theory in Statistical Physics , 1959 .

[74]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[75]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[76]  G. Olshanski,et al.  Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes , 2001, math/0109194.