STUDIES IN PERTURBATION THEORY. X. LOWER BOUNDS TO ENERGY EIGENVALUES IN PERTURBATION-THEORY GROUND STATE
暂无分享,去创建一个
[1] J. Hersch. On the Methods of One-Dimensional Auxiliary Problems and of Domain Partitioning: Their Application to Lower Bounds for the Eigenvalues of Schrodinger's Equation , 1964 .
[2] R. Yaris. Resolvent Operator Formulation of Stationary State Perturbation Theory , 1964 .
[3] Per-Olov Löwdin,et al. Studies in perturbation theory . Part I. An elementary iteration-variation procedure for solving the Schrödinger equation by partitioning technique , 1964 .
[4] P. Löwdin. Studies in perturbation theory . II. Generalization of the Brillouin-Wigner formalism III. Solution of the Schrödinger equation under a variation of a parameter , 1964 .
[5] J. Hersch. THE METHOD OF INTERIOR PARALLELS APPLIED TO POLYGONAL OR MULTIPLY CONNECTED MEMBRANES , 1963 .
[6] D. Fox,et al. Lower Bounds for Energy Levels of Molecular Systems , 1963 .
[7] D. Fox,et al. Error Bounds for Expectation Values , 1963 .
[8] J. Hersch. Lower bounds for all eigenvalues by cell functions: A refined form of H. F. Weinberger's method , 1963 .
[9] P. Löwdin. Studies in Perturbation Theory. IV. Solution of Eigenvalue Problem by Projection Operator Formalism , 1962 .
[10] C. Pekeris,et al. 1 $sup 1$S, 2 $sup 1$S, AND 2 $sup 3$S STATES OF H$sup -$ AND OF He , 1962 .
[11] D. Fox,et al. Lower bounds to eigenvalues using operator decompositions of the form B*B , 1962 .
[12] D. Fox,et al. A Procedure for Estimating Eigenvalues , 1962 .
[13] David W. Fox,et al. Lower Bounds for Eigenvalues of Schrödinger's Equation , 1961 .
[14] C. Coulson,et al. Lower-bound energies and the Virial theorem in wave mechanics , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.
[15] G. G. Hall,et al. The accuracy of atomic wave functions and their scale , 1961 .
[16] T. Kinoshita. GROUND STATE OF THE HELIUM ATOM. II , 1959 .
[17] N. Bazley. LOWER BOUNDS FOR EIGENVALUES WITH APPLICATION TO THE HELIUM ATOM. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[18] N. H. March,et al. Perturbation Theory in Wave Mechanics , 1958 .
[19] G. Speisman. Convergent Schrödinger Perturbation Theory , 1957 .
[20] L. Wilets,et al. Lower Bound to the Ground-State Energy and Mass Polarization in Helium-Like Atoms , 1956 .
[21] Tosio Kato,et al. On some approximate methods concerning the operatorsT* T , 1953 .
[22] S. Chandrasekhar,et al. Shift of the 1 1 S state of helium , 1953 .
[23] J. Schwinger,et al. Variational Principles for Scattering Processes. I , 1950 .
[24] Tosio Kato. On the Upper and Lower Bounds of Eigenvalues , 1949 .
[25] Paul A. Samuelsos. A Convergent Iterative Process , 1945 .
[26] A. F. Stevenson,et al. A Lower Limit for the Theoretical Energy of the Normal State of Helium , 1938 .
[27] A. F. Stevenson. On the Lower Bounds of Weinstein and Romberg in Quantum Mechanics , 1938 .
[28] D H Weinstein,et al. Modified Ritz Method. , 1934, Proceedings of the National Academy of Sciences of the United States of America.
[29] J. MacDonald,et al. Successive Approximations by the Rayleigh-Ritz Variation Method , 1933 .
[30] E. Hylleraas,et al. Numerische Berechnung der 2S-Terme von Ortho- und Par-Helium , 1930 .
[31] E. Hylleraas. Über den Grundzustand des Heliumatoms , 1928 .
[32] G. Temple. The Theory of Rayleigh's Principle as Applied to Continuous Systems , 1928 .
[33] A. C. Aitken. XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .
[34] W. Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .