STUDIES IN PERTURBATION THEORY. X. LOWER BOUNDS TO ENERGY EIGENVALUES IN PERTURBATION-THEORY GROUND STATE

Lower bounds to energy eigenvalues in perturbation theory ground state, studying lower bounds to ground state energies of helium-like ions

[1]  J. Hersch On the Methods of One-Dimensional Auxiliary Problems and of Domain Partitioning: Their Application to Lower Bounds for the Eigenvalues of Schrodinger's Equation , 1964 .

[2]  R. Yaris Resolvent Operator Formulation of Stationary State Perturbation Theory , 1964 .

[3]  Per-Olov Löwdin,et al.  Studies in perturbation theory . Part I. An elementary iteration-variation procedure for solving the Schrödinger equation by partitioning technique , 1964 .

[4]  P. Löwdin Studies in perturbation theory . II. Generalization of the Brillouin-Wigner formalism III. Solution of the Schrödinger equation under a variation of a parameter , 1964 .

[5]  J. Hersch THE METHOD OF INTERIOR PARALLELS APPLIED TO POLYGONAL OR MULTIPLY CONNECTED MEMBRANES , 1963 .

[6]  D. Fox,et al.  Lower Bounds for Energy Levels of Molecular Systems , 1963 .

[7]  D. Fox,et al.  Error Bounds for Expectation Values , 1963 .

[8]  J. Hersch Lower bounds for all eigenvalues by cell functions: A refined form of H. F. Weinberger's method , 1963 .

[9]  P. Löwdin Studies in Perturbation Theory. IV. Solution of Eigenvalue Problem by Projection Operator Formalism , 1962 .

[10]  C. Pekeris,et al.  1 $sup 1$S, 2 $sup 1$S, AND 2 $sup 3$S STATES OF H$sup -$ AND OF He , 1962 .

[11]  D. Fox,et al.  Lower bounds to eigenvalues using operator decompositions of the form B*B , 1962 .

[12]  D. Fox,et al.  A Procedure for Estimating Eigenvalues , 1962 .

[13]  David W. Fox,et al.  Lower Bounds for Eigenvalues of Schrödinger's Equation , 1961 .

[14]  C. Coulson,et al.  Lower-bound energies and the Virial theorem in wave mechanics , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  G. G. Hall,et al.  The accuracy of atomic wave functions and their scale , 1961 .

[16]  T. Kinoshita GROUND STATE OF THE HELIUM ATOM. II , 1959 .

[17]  N. Bazley LOWER BOUNDS FOR EIGENVALUES WITH APPLICATION TO THE HELIUM ATOM. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[18]  N. H. March,et al.  Perturbation Theory in Wave Mechanics , 1958 .

[19]  G. Speisman Convergent Schrödinger Perturbation Theory , 1957 .

[20]  L. Wilets,et al.  Lower Bound to the Ground-State Energy and Mass Polarization in Helium-Like Atoms , 1956 .

[21]  Tosio Kato,et al.  On some approximate methods concerning the operatorsT* T , 1953 .

[22]  S. Chandrasekhar,et al.  Shift of the 1 1 S state of helium , 1953 .

[23]  J. Schwinger,et al.  Variational Principles for Scattering Processes. I , 1950 .

[24]  Tosio Kato On the Upper and Lower Bounds of Eigenvalues , 1949 .

[25]  Paul A. Samuelsos A Convergent Iterative Process , 1945 .

[26]  A. F. Stevenson,et al.  A Lower Limit for the Theoretical Energy of the Normal State of Helium , 1938 .

[27]  A. F. Stevenson On the Lower Bounds of Weinstein and Romberg in Quantum Mechanics , 1938 .

[28]  D H Weinstein,et al.  Modified Ritz Method. , 1934, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. MacDonald,et al.  Successive Approximations by the Rayleigh-Ritz Variation Method , 1933 .

[30]  E. Hylleraas,et al.  Numerische Berechnung der 2S-Terme von Ortho- und Par-Helium , 1930 .

[31]  E. Hylleraas Über den Grundzustand des Heliumatoms , 1928 .

[32]  G. Temple The Theory of Rayleigh's Principle as Applied to Continuous Systems , 1928 .

[33]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[34]  W. Ritz Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .