Helioseismology with Solar Orbiter

The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T−1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its performance for helioseismology applications. As input we used a 6 hr time-series of realistic solar magneto-convection simulation (Stagger code) and the SPINOR radiative transfer code to synthesize the observables. The simulated power spectra of solar oscillations show that the instrument is suitable for helioseismology. In particular, the specified point spread function, image jitter, and photon noise are no obstacle to a successful mission.

[1]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[2]  R. Garcı́a,et al.  The Sun as a Star: 13 years of SoHO , 2009, 0907.4439.

[3]  C. J. Wolfson,et al.  Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO) , 2012 .

[4]  Naoj,et al.  DETECTION OF SUPERGRANULATION ALIGNMENT IN POLAR REGIONS OF THE SUN BY HELIOSEISMOLOGY , 2010, 1011.1025.

[5]  E. Berkowitz,et al.  NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS , 2011, 1111.1343.

[6]  G. Orton,et al.  Temperature and Composition of Saturn's Polar Hot Spots and Hexagon , 2008, Science.

[7]  Ester Antonucci,et al.  Solar Orbiter Exploring the Sun-Heliosphere Connection, Solar Orbiter Definition Study Report , 2011 .

[8]  M. Dikpati,et al.  THEORY OF SOLAR MERIDIONAL CIRCULATION AT HIGH LATITUDES , 2011, 1112.1107.

[9]  D. Braun,et al.  Prospects for the Detection of the Deep Solar Meridional Circulation , 2008, 0810.0284.

[10]  C. Lindsey,et al.  Seismic images of the far side of the Sun , 2000, Science.

[11]  D. Braun,et al.  The Local Helioseismology of Inclined Magnetic Fields and the Showerglass Effect , 2005 .

[12]  O. von der Lühe,et al.  High spatial resolution performance of a triple Fabry–Pérot filtergraph , 2000 .

[13]  M. Rieutord,et al.  Comparison of solar horizontal velocity fields from SDO/HMI and Hinode data , 2013, 1303.4271.

[14]  L. B. Rubio,et al.  Iron abundance in the solar photosphere. Application of a two-component model atmosphere , 2002 .

[15]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[16]  J. Schou,et al.  Wavelike Properties of Solar Supergranulation Detected in Doppler Shift Data , 2003 .

[17]  F. Hill,et al.  THE HIGH-LATITUDE BRANCH OF THE SOLAR TORSIONAL OSCILLATION IN THE RISING PHASE OF CYCLE 24 , 2013 .

[18]  J. Kuhn,et al.  The Precise Solar Shape and Its Variability , 2012, Science.

[19]  D. Braun,et al.  Helioseismic Holography of Simulated Solar Convection and Prospects for the Detection of Small-Scale Subsurface Flows , 2007, 0708.0214.

[20]  R. S. Bogart,et al.  SYSTEMATIC CENTER-TO-LIMB VARIATION IN MEASURED HELIOSEISMIC TRAVEL TIMES AND ITS EFFECT ON INFERENCES OF SOLAR INTERIOR MERIDIONAL FLOWS , 2012, 1203.1904.

[21]  D. Müller,et al.  Solar Orbiter , 2012, Solar Physics.

[22]  Frank Hill,et al.  The GONG++ data processing pipeline , 2003 .

[23]  Alan M. Title,et al.  The solar oscillations investigation - Michelson Doppler Imager. , 1992 .

[24]  D. Ellison,et al.  A CR-HYDRO-NEI MODEL OF MULTI-WAVELENGTH EMISSION FROM THE VELA JR. SUPERNOVA REMNANT (SNR RX J0852.0−4622) , 2013, 1302.4645.

[25]  S. Couvidat,et al.  On the Formation Height of the SDO/HMI Fe 6173 Å Doppler Signal , 2011, 1104.5166.

[26]  J. C. D. T. Iniesta,et al.  The usefulness of analytic response functions , 2007, 1211.1502.

[27]  L. Gizon,et al.  The Solar Orbiter mission and its prospects for helioseismology , 2007, 1002.2278.

[28]  Robert F. Stein,et al.  Excitation of Radial P-Modes in the Sun and Stars , 2004 .

[29]  E. Behar,et al.  X-RAY ABSORPTION OF HIGH-REDSHIFT QUASARS , 2013, 1307.2053.

[30]  R. C. Dixon,et al.  DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY , 2012, 1208.5900.

[31]  D. Müller,et al.  Solar Orbiter , 2012, Solar Physics.

[32]  D. Müller,et al.  Exploring the Sun–Heliosphere Connection , 2013 .

[33]  F. Hill,et al.  Subsurface Meridional Flow from HMI Using the Ring-Diagram Pipeline , 2013 .

[34]  Thompson,et al.  Dynamic variations at the base of the solar convection zone , 2000, Science.

[35]  Copenhagen,et al.  Local Helioseismology and Correlation Tracking Analysis of Surface Structures in Realistic Simulations of Solar Convection , 2006, astro-ph/0608204.

[36]  J. Jiang,et al.  COUNTERCELL MERIDIONAL FLOW AND LATITUDINAL DISTRIBUTION OF THE SOLAR POLAR MAGNETIC FIELD , 2009 .

[37]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[38]  H. Spruit,et al.  Local Helioseismology: Three-Dimensional Imaging of the Solar Interior , 2010, 1001.0930.

[39]  A. Ruzmaikin,et al.  Helioseismic probing of the solar dynamo , 2003 .

[40]  J. C. del Toro Iniesta,et al.  The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory , 2010, 1009.1095.

[41]  T. Duvall,et al.  DETECTION OF EQUATORWARD MERIDIONAL FLOW AND EVIDENCE OF DOUBLE-CELL MERIDIONAL CIRCULATION INSIDE THE SUN , 2013, 1307.8422.

[42]  J. Schou,et al.  EFFECTS OF ASYMMETRIC FLOWS IN SOLAR CONVECTION ON OSCILLATION MODES , 2012, 1210.1583.

[43]  A. M. Title,et al.  STRUCTURE AND ROTATION OF THE SOLAR INTERIOR: INITIAL RESULTS FROM THE MDI MEDIUM-L PROGRAM , 1997 .

[44]  USA,et al.  Numerical constraints on the model of stochastic excitation of solar-type oscillations , 2003, astro-ph/0303198.

[45]  R. F. Stein,et al.  Solar Oscillations and Convection. II. Excitation of Radial Oscillations , 2000 .

[46]  T. Emonet,et al.  Simulations of magneto-convection in the solar photosphere Equations, methods, and results of the MURaM code , 2005 .

[47]  J. Schou,et al.  Polarization Calibration of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) , 2012 .

[48]  A. Kosovichev,et al.  Surface Magnetism Effects in Time-Distance Helioseismology , 2006, astro-ph/0602260.

[49]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[50]  J. M. Beckers On the effect of narrow-band filters on the diffraction limited resolution of astronomical telescopes , 1998 .

[51]  Juri Toomre,et al.  Structure and Rotation of the Solar Interior: Initial Results from the MDI Medium-L Program , 1997 .

[52]  L. Gizon,et al.  Image compression in local helioseismology , 2014, 1409.4176.

[53]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[54]  S. Solanki,et al.  Properties of the solar granulation obtained from the inversion of low spatial resolution spectra , 2000 .

[55]  K. Sreenivasan,et al.  Anomalously weak solar convection , 2012, Proceedings of the National Academy of Sciences.

[56]  Laurent Gizon,et al.  Seismic constraints on rotation of Sun-like star and mass of exoplanet , 2013, Proceedings of the National Academy of Sciences.

[57]  P. Scherrer,et al.  A Note on Saturation Seen in the MDI/SOHO Magnetograms , 2007 .

[58]  S. Couvidat,et al.  Helioseismic Travel-Time Definitions and Sensitivity to Horizontal Flows Obtained from Simulations of Solar Convection , 2009, 0904.2025.

[59]  Yang Liu,et al.  Comparison of Line-of-Sight Magnetograms Taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager , 2012 .

[60]  L. Gizon,et al.  Wave-like properties of solar supergranulation , 2003, Nature.

[61]  P. Gilman Model calculations concerning rotation at high solar latitudes and the depth of the solar convection zone , 1979 .

[62]  J. C. del Toro Iniesta,et al.  Sunrise: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS , 2010, 1008.3460.

[63]  Å. Nordlund,et al.  Solar Oscillations and Convection: I. Formalism for Radial Oscillations , 2000, astro-ph/0006336.

[64]  SimulationsRobert F. SteinMichigan Realistic Solar Convection Simulations , 2007 .

[65]  Jesper Schou,et al.  Wavelength Dependence of the Helioseismic and Magnetic Imager (HMI) Instrument onboard the Solar Dynamics Observatory (SDO) , 2012 .

[66]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities: Iron Through Nickel , 1988 .

[67]  C. J. Wolfson,et al.  The Solar Oscillations Investigation - Michelson Doppler Imager , 1995 .

[68]  R. Howe Solar Interior Rotation and its Variation , 2009, 0902.2406.

[69]  A. Álvarez-Herrero,et al.  The Sunrise Mission , 2010, 1009.2689.

[70]  Yang Liu,et al.  Correction of Offset in MDI/SOHO Magnetograms , 2002 .

[71]  D. Hathaway,et al.  Giant Convection Cells Found on the Sun , 2013, Science.

[72]  K. Mannheim,et al.  EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS , 2010, 1001.1170.

[73]  Richard C. Willson,et al.  Virgo: Experiment for Helioseismology and Solar Irradiance Monitoring , 1995 .

[74]  J. Miles,et al.  Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO) , 2012 .