On a Class of Measure-Dependent Stochastic Evolution Equations Driven by fBm

We investigate a class of abstract stochastic evolution equations driven by a fractional Brownian motion (fBm) dependent upon a family of probability measures in a real separable Hilbert space. We establish the existence and uniqueness of a mild solution, a continuous dependence estimate, and various convergence and approximation results. Finally, the analysis of three examples is provided to illustrate the applicability of the general theory.

[1]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[2]  Tsuan Wu Ting,et al.  Certain non-steady flows of second-order fluids , 1963 .

[3]  R. Huilgol A second order fluid of the differential type , 1968 .

[4]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[5]  M. Gurtin,et al.  On a theory of heat conduction involving two temperatures , 1968 .

[6]  Patrick Billingsley,et al.  Weak convergence of measures - applications in probability , 1971, CBMS-NSF regional conference series in applied mathematics.

[7]  Ralph E. Showalter,et al.  A Nonlinear Parabolic-Sobolev Equation , 1975 .

[8]  R. Showalter Nonlinear Degenerate Evolution Equations and Partial Differential Equations of Mixed Type , 1975 .

[9]  Heinz Brill,et al.  A semilinear Sobolev evolution equation in a Banach space , 1977 .

[10]  H. Bergström,et al.  Weak convergence of measures , 1982 .

[11]  Samuel M Rankin,et al.  A partial functional differential equation of Sobolev type , 1983 .

[12]  D. Dawson Critical dynamics and fluctuations for a mean-field model of cooperative behavior , 1983 .

[13]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[14]  Hiroshi Tanaka,et al.  Diffusion with interactions and collisions between coloured particles and the propagation of chaos , 1987 .

[15]  J. Gärtner,et al.  Large deviations from the mckean-vlasov limit for weakly interacting diffusions , 1987 .

[16]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[17]  Murad S. Taqqu,et al.  On the Self-Similar Nature of Ethernet Traffic , 1993, SIGCOMM.

[18]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[19]  N. U. Ahmed,et al.  A semilinear Mckean-Vlasov stochastic evolution equation in Hilbert space , 1995 .

[20]  S. J. Lin,et al.  Stochastic analysis of fractional brownian motions , 1995 .

[21]  G. Gripenberg,et al.  On the prediction of fractional Brownian motion , 1996, Journal of Applied Probability.

[22]  V. Anh,et al.  A parabolic stochastic differential equation with fractional Brownian motion input , 1999 .

[23]  L. Decreusefond,et al.  Stochastic Analysis of the Fractional Brownian Motion , 1999 .

[24]  A. Fannjiang,et al.  Fractional Brownian motions in a limit of turbulent transport , 2001 .

[25]  D. Nualart,et al.  Differential equations driven by fractional Brownian motion , 2002 .

[26]  B. Pasik-Duncan,et al.  FRACTIONAL BROWNIAN MOTION AND STOCHASTIC EQUATIONS IN HILBERT SPACES , 2002 .

[27]  D. Nualart,et al.  Evolution equations driven by a fractional Brownian motion , 2003 .

[28]  Mark A. McKibben,et al.  FUNCTIONAL INTEGRO-DIFFERENTIAL STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACE , 2003 .

[29]  M. McKibben,et al.  On a McKean‐Vlasov Stochastic Integro‐differential Evolution Equation of Sobolev‐Type , 2003 .

[30]  Vo V. Anh,et al.  A fractional stochastic evolution equation driven by fractional Brownian motion , 2003, Monte Carlo Methods Appl..