Generalized random walk algorithm for the numerical modeling of complex diffusion processes

A generalized form of the random walk algorithm to simulate diffusion processes is introduced. Unlike the usual approach, at a given time all the particles from a grid node are simultaneously scattered using the Bernoulli repartition. This procedure saves memory and computing time and no restrictions are imposed for the maximum number of particles to be used in simulations. We prove that for simple diffusion the method generalizes the finite difference scheme and gives the same precision for large enough number of particles. As an example, simulations of diffusion in random velocity field are performed and the main features of the stochastic mathematical model are numerically tested. 2003 Elsevier Science B.V. All rights reserved.

[1]  R. Killey,et al.  Numerical simulations of Twin Lake Natural-Gradient Tracer Tests: A comparison of methods , 1993 .

[2]  Andrew J. Majda,et al.  Superdiffusion in nearly stratified flows , 1992 .

[3]  Jürgen Wolff von Gudenberg,et al.  Scientific Computing, Validated Numerics, Interval Methods , 2010, Springer US.

[4]  Robert D. Falgout,et al.  Analysis of subsurface contaminant migration and remediation using high performance computing , 1998 .

[5]  R. Lefever,et al.  Noise in nonlinear dynamical systems: Noise-induced transitions , 1989 .

[6]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[7]  A. Thompson,et al.  Reactive geochemical transport problems in nuclear waste analyses , 1989 .

[8]  Kurt Roth,et al.  Transport of conservative chemical through an unsaturated two‐dimensional Miller‐similar medium with steady state flow , 1996 .

[9]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[10]  Andrew F. B. Tompson,et al.  Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media , 1990 .

[11]  S. Godunov,et al.  Difference Schemes: An Introduction to the Underlying Theory , 1987 .

[12]  Ahmed F. Ghoniem,et al.  Grid-free simulation of diffusion using random walk methods , 1985 .

[13]  Virgilio Fiorotto,et al.  Solute transport in highly heterogeneous aquifers , 1998 .

[14]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[15]  H. Vereecken,et al.  Global Random Walk Simulations of Diffusion , 2001 .

[16]  M. Dentz,et al.  Temporal behaviour of a solute cloud in a chemically heterogeneous porous medium , 1999, Journal of Fluid Mechanics.

[17]  Vivek Kapoor,et al.  Transport in three-dimensionally heterogeneous aquifers: 1. Dynamics of concentration fluctuations , 1994 .

[18]  Olaf Neuendorf Numerische 3D-Simulation des Stofftransports in einem heterogenen Aquifer , 1997 .

[19]  M. T. van Genuchten,et al.  An efficient Eulerian‐Lagrangian Method for solving solute transport problems in steady and transient flow fields , 1993 .

[20]  Uwe Jaekel,et al.  Estimation of Macrodispersion by Different Approximation Methods for Flow and Transport in Randomly Heterogeneous Media , 2001 .

[21]  L. Gelhar,et al.  Transport in three-dimensionally heterogeneous aquifers: 2. Predictions and observations of concentration fluctuations , 1994 .

[22]  Alexandre J. Chorin,et al.  Vortex sheet approximation of boundary layers , 1978 .

[23]  A. Rinaldo,et al.  Simulation of dispersion in heterogeneous porous formations: Statistics, first‐order theories, convergence of computations , 1992 .