Surface analysis of novel fibroin films based on well-preserved crystalline structures.

[1]  Kazushi Yamada,et al.  Fabrication and characterization of a novel silk fibroin film with UV and thermal resistance , 2020 .

[2]  S. Sakai,et al.  Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting , 2020, Materials today. Bio.

[3]  Kazushi Yamada,et al.  Characterization of Ground Silk Fibroin through Comparison of Nanofibroin and Higher Order Structures , 2020, ACS omega.

[4]  Kazushi Yamada,et al.  A novel technique in the preparation of environmentally friendly cellulose nanofiber/silk fibroin fiber composite films with improved thermal and mechanical properties , 2019, Journal of Cleaner Production.

[5]  Kazushi Yamada,et al.  Preparation of Silk-Fibroin Nanofiber Film with Native β-Sheet Structure via a Never Dried-Simple Grinding Treatment , 2019, Journal of Fiber Science and Technology.

[6]  Anoop K. Pal,et al.  High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing , 2017, Scientific Reports.

[7]  Mark W Grinstaff,et al.  Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. , 2012, Biosensors & bioelectronics.

[8]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[9]  F. Netzer,et al.  X-ray induced irradiation effects in glycine thin films: A time-dependent XPS and TPD study , 2010 .

[10]  Satoshi Miyaguchi,et al.  Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays , 2009 .

[11]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[12]  A. Clark,et al.  Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels. , 2009, International journal of peptide and protein research.

[13]  A. N. Nakagaito,et al.  Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites , 2007 .

[14]  G. B. Petersen,et al.  Dynamically resizable nanometre-scale apertures for molecular sensing , 2007 .

[15]  David L. Kaplan,et al.  Role of pH and charge on silk protein assembly in insects and spiders , 2006 .

[16]  Yasushi Tamada,et al.  New process to form a silk fibroin porous 3-D structure. , 2005, Biomacromolecules.

[17]  M. Nogi,et al.  Optically transparent composites reinforced with plant fiber-based nanofibers , 2005 .

[18]  Kazushi Yamada,et al.  AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures , 2003 .

[19]  A. Barth,et al.  What vibrations tell about proteins , 2002, Quarterly Reviews of Biophysics.

[20]  S. Cai,et al.  Identification of beta-turn and random coil amide III infrared bands for secondary structure estimation of proteins. , 1999, Biophysical chemistry.

[21]  J. Boye,et al.  Effects of physicochemical factors on the secondary structure of β-lactoglobulin , 1996, Journal of Dairy Research.

[22]  S. Yamashita,et al.  Surface Characterization of 2-Hydroxyethyl Methacrylate/Styrene Block Copolymers by Transmission Electron Microscopy Observation and Contact Angle Measurement , 1995 .

[23]  P. Gerin,et al.  Poly(amino acids) by XPS : Analysis of Poly(L- Leucine) , 1994 .

[24]  K. Mita,et al.  Highly repetitive structure and its organization of the silk fibroin gene , 1994, Journal of Molecular Evolution.

[25]  H. Mantsch,et al.  Aggregation of chymotrypsinogen: portrait by infrared spectroscopy. , 1992, Biochimica et biophysica acta.

[26]  T. J. McCarthy,et al.  Thermal reconstruction of surface-functionalized poly(chlorotrifluoreothylene) , 1990 .

[27]  T. Takahagi,et al.  XPS study of oriented organic molecules: III. Langmuir-Blodgett membrane of a fatty acid , 1988 .

[28]  K. Kataoka,et al.  ESCA study of new antithrombogenic materials: Surface composition of poly(propylene oxide)‐segmented nylon 610 and its blood compatibility , 1986 .

[29]  H. R. Thomas,et al.  Surface Studies on Multicomponent Polymer Systems by X-ray Photoelectron Spectroscopy. Polystyrene/Poly(ethylene oxide) Diblock Copolymers , 1979 .

[30]  N. Kasai,et al.  Physical properties and structure of silk. V. Thermal behavior of silk fibroin in the random-coil conformation , 1977 .

[31]  J. Peeling,et al.  An experimental and theoretical investigation of the core level spectra of a series of amino acids, dipeptides and polypeptides. , 1976, Biochimica et biophysica acta.

[32]  M. Refojo,et al.  Wettability of hydrogels. I. Poly (2-hydroxyethyl methacrylate). , 1975, Journal of biomedical materials research.

[33]  E. Iizuka Mechanism of fiber formation by the silkworm, Bombyx mori L. , 1966, Biorheology.

[34]  T. Miyazawa,et al.  The Intramolecular Force Field and Normal Vibrations of Isotactic Polypropylene and Deuterated Derivatives , 1964 .

[35]  T. Miyazawa,et al.  Chain conformation and amide V band of polypeptides , 1962 .

[36]  E. Blout,et al.  The Infrared Spectra of Polypeptides in Various Conformations: Amide I and II Bands1 , 1961 .

[37]  T. Shimanouchi,et al.  Characteristic Infrared Bands of Monosubstituted Amides , 1956 .

[38]  R. E. Marsh,et al.  The structure of tussah silk fibroin (with a note on the structure of β-poly-l-alanine) , 1955 .

[39]  G. Sutherland,et al.  The Out‐of‐Plane Deformation Frequency of the NH Group in the Peptide Link , 1953 .

[40]  E. Blout,et al.  Infrared Spectra and the Structure of Glycine and Leucine Peptides1 , 1952 .

[41]  C. Bamford,et al.  Water-Soluble Silk: an α-Protein , 1951, Nature.

[42]  W. Ramsden Coagulation by Shearing and by Freezing , 1938, Nature.

[43]  S. Hattori,et al.  The outermost surface properties of silk fibroin films reflect ethanol-treatment conditions used in biomaterial preparation. , 2016, Materials science & engineering. C, Materials for biological applications.

[44]  Mingzhong Li,et al.  Enzymatic degradation behavior of porous silk fibroin sheets. , 2003, Biomaterials.

[45]  T. Hashimoto,et al.  Morphology of block copolymers and mixtures of block copolymers at free surfaces , 1992 .

[46]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[47]  T. Kajiyama,et al.  Surface molecular mobility and platelet reactivity of segmented poly(etherurethaneureas) with hydrophilic and hydrophobic soft segment components. , 1989, Journal of biomaterials science. Polymer edition.

[48]  G. Wertheim,et al.  X-Ray Photoelectron Spectroscopy , 1986 .

[49]  C. Bamford,et al.  CHAPTER 3 – SYNTHETIC POLYPEPTIDES AND FIBROUS PROTEINS , 1963 .

[50]  F LUCAS,et al.  The silk fibroins. , 1958, Advances in protein chemistry.

[51]  A. Elliott,et al.  Structure and properties of synthetic polypeptides and silk proteins , 1956 .

[52]  R. E. Marsh,et al.  An investigation of the structure of silk fibroin. , 1955, Biochimica et biophysica acta.