Excluded‐Volume Effects in Dilute Polymer Solutions. II. Limiting Viscosity Number

Measurements of [η] were made for seven fractions of polychloroprene (PCP) in methyl ethyl ketone, n‐butyl acetate, and carbon tetrachloride at 25°C and for three fractions of PCP in trans‐decalin at a number of temperatures ranging from 0.05° to 65°C. On a log–log graph paper, the values of αη3( = [η]/[η]θ) calculated from these data formed a composite curve when plotted against αs3( = 〈S2〉3/2/〈S2〉03/2) obtained from light‐scattering experiments under the same conditions. This curve is characterized by a relatively marked upward curvature in the vicinity of the origin, followed by a linear portion of unit slope. Its initial tangent has a slope of 0.65, which is much smaller than 0.81 predicted theoretically by Kurata and Yamakawa. Plots of αη3 vs the interaction parameter z were prepared by evaluating z for each αs by use of the Yamakawa equation. They were fitted by a single curve having a slight downward curvature, suggesting that no drainage effect manifests itself in the viscosity behavior of the sys...

[1]  A. Teŕamoto,et al.  Excluded‐Volume Effects in Dilute Polymer Solutions. I. Equilibrium Properties , 1968 .

[2]  H. Yamakawa,et al.  Excluded‐Volume Effects in Linear Polymer Chains: A Hierarchy of Differential Equations , 1967 .

[3]  G. Berry Thermodynamic and Conformational Properties of Polystyrene. II. Intrinsic Viscosity Studies on Dilute Solutions of Linear Polystyrenes , 1967 .

[4]  H. Fujita,et al.  Molecular Characterization of Polychloroprene in a θ Solvent , 1966 .

[5]  P. Flory Treatment of the effect of excluded volume and deduction of unperturbed dimensions of polymer chains. Configurational parameters for cellulose derivatives , 1966 .

[6]  G. Berry Thermodynamic and Conformational Properties of Polystyrene. I. Light‐Scattering Studies on Dilute Solutions of Linear Polystyrenes , 1966 .

[7]  W. Stockmayer,et al.  Intrinsic viscosities and unperturbed dimensions of long chain molecules , 1963 .

[8]  M. Fixman Radius of Gyration of Polymer Chains. II. Segment Density and Excluded Volume Effects , 1962 .

[9]  G. Schulz,et al.  Über den Einfluß der inneren Beweglichkeit und des Lösungsmittels auf die Gestalt von Fadenmolekülen in Lösung (Versuche an Polymethylmethacrylat) , 1961 .

[10]  A. Roig,et al.  Excluded Volume Effect of Linear Polymer Molecules , 1960 .

[11]  M. Kurata,et al.  Theory of Dilute Polymer Solution. II. Osmotic Pressure and Frictional Properties , 1958 .

[12]  P. Flory,et al.  Relationship of the Second Virial Coefficient to Polymer Chain Dimensions and Interaction Parameters , 1957 .

[13]  W. R. Krigbaum,et al.  The Configuration of Polymer Molecules: Polystyrene in Cyclohexane , 1955 .

[14]  W. Stockmayer Chain dimensions near the flory temperature , 1955 .

[15]  Bruno H. Zimm,et al.  Excluded Volume in Polymer Chains , 1953 .

[16]  P. Flory,et al.  Treatment of Intrinsic Viscosities , 1951 .

[17]  Paul J. Flory,et al.  The Configuration of Real Polymer Chains , 1949 .

[18]  M. Huggins,et al.  THE VISCOSITY OF DILUTE SOLUTIONS OF LONG-CHAIN MOLECULES, IV. DEPENDENCE ON CONCENTRATION , 1942 .

[19]  R. M. Fuoss,et al.  Viscosities of Solutions of Polyvinyl Chloride , 1942 .

[20]  G. Schulz,et al.  Eine Gleichung zur Berechnung der Viscositätszahl für sehr kleine Konzentrationen, [Molekulargewichtsbestimmungen an makromolekularen Stoffen, IX] , 1941 .