RBF-LOI: Augmenting Radial Basis Functions (RBFs) with Least Orthogonal Interpolation (LOI) for Solving PDEs on Surfaces

Abstract We present a new method for the solution of PDEs on manifolds M ⊂ R d of co-dimension one using stable scale-free radial basis function (RBF) interpolation. Our method involves augmenting polyharmonic spline (PHS) RBFs with polynomials to generate RBF-finite difference (RBF-FD) formulas. These polynomial basis elements are obtained using the recently-developed least orthogonal interpolation technique (LOI) on each RBF-FD stencil to obtain local restrictions of polynomials in R 3 to stencils on M . The resulting RBF-LOI method uses Cartesian coordinates, does not require any intrinsic coordinate systems or projections of points onto tangent planes, and our tests illustrate robustness to stagnation errors. We show that our method produces high orders of convergence for PDEs on the sphere and torus, and present some applications to reaction–diffusion PDEs motivated by biology.

[1]  Grady B. Wright,et al.  A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.

[2]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[3]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[4]  Robert Michael Kirby,et al.  A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces , 2014, Journal of Scientific Computing.

[5]  Cécile Piret,et al.  The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , 2012, J. Comput. Phys..

[6]  Manuel Kindelan,et al.  RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..

[7]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[8]  Grady B. Wright,et al.  Mesh-free Semi-Lagrangian Methods for Transport on a Sphere Using Radial Basis Functions , 2018, J. Comput. Phys..

[9]  Peter H. Lauritzen,et al.  A class of deformational flow test cases for linear transport problems on the sphere , 2010, J. Comput. Phys..

[10]  Cécile Piret,et al.  Fast RBF OGr for solving PDEs on arbitrary surfaces , 2016 .

[11]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy , 2016, J. Comput. Phys..

[12]  FornbergBengt,et al.  On the role of polynomials in RBF-FD approximations , 2016 .

[13]  Natasha Flyer,et al.  Transport schemes on a sphere using radial basis functions , 2007, J. Comput. Phys..

[14]  Bengt Fornberg,et al.  Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..

[15]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[16]  Paolo Cignoni,et al.  MeshLab: an Open-Source Mesh Processing Tool , 2008, Eurographics Italian Chapter Conference.

[17]  Robert Michael Kirby,et al.  Robust Node Generation for Meshfree Discretizations on Irregular Domains and Surfaces , 2018, SIAM J. Sci. Comput..

[18]  Dongbin Xiu,et al.  Stochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation , 2012, SIAM J. Sci. Comput..

[19]  Gregory Barnett,et al.  A Robust RBF-FD Formulation based on Polyharmonic Splines and Polynomials , 2015 .

[20]  Varun Shankar,et al.  The overlapped radial basis function-finite difference (RBF-FD) method: A generalization of RBF-FD , 2016, J. Comput. Phys..

[21]  Bengt Fornberg,et al.  On spherical harmonics based numerical quadrature over the surface of a sphere , 2014, Advances in Computational Mathematics.

[22]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[23]  J. Steven,et al.  IMPLICIT-EXPLICIT METHODS FOR TIME-DEPENDENT PDE , 1997 .

[24]  Bengt Fornberg,et al.  Numerical quadrature over smooth surfaces with boundaries , 2018, J. Comput. Phys..

[25]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[26]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , 2017, J. Comput. Phys..

[27]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[28]  C. D. Boor,et al.  Computational aspects of polynomial interpolation in several variables , 1992 .

[29]  A. Iske,et al.  Grid-free adaptive semi-Lagrangian advection using radial basis functions , 2002 .

[30]  Louis J. Wicker,et al.  Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations , 2016, J. Comput. Phys..

[31]  Robert Schaback,et al.  Optimal Stencils in Sobolev Spaces , 2016, 1611.04750.

[32]  Michael J. McCourt,et al.  Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..

[33]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[34]  Bengt Fornberg,et al.  Stable computations with flat radial basis functions using vector-valued rational approximations , 2016, J. Comput. Phys..

[35]  Kevin W. Aiton,et al.  A Radial Basis Function Partition of Unity Method for Transport on the Sphere , 2014 .

[36]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[37]  Erik Lehto,et al.  A Radial Basis Function (RBF) Compact Finite Difference (FD) Scheme for Reaction-Diffusion Equations on Surfaces , 2017, SIAM J. Sci. Comput..

[38]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[39]  J A Reeger,et al.  Numerical quadrature over smooth, closed surfaces , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Oleg Davydov,et al.  Adaptive meshless centres and RBF stencils for Poisson equation , 2011, J. Comput. Phys..

[41]  Bengt Fornberg,et al.  Stabilization of RBF-generated finite difference methods for convective PDEs , 2011, J. Comput. Phys..

[42]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..