Numerical solution of the time-harmonic Maxwell equations and incompressible magnetohydrodynamics problems

[1]  Guido Kanschat,et al.  The local discontinuous Galerkin method for the Oseen equations , 2003, Math. Comput..

[2]  Dominik Schötzau,et al.  Mixed finite element approximation of incompressible MHD problems based on weighted regularization , 2004 .

[3]  P. Davidson An Introduction to Magnetohydrodynamics , 2001 .

[4]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[5]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[6]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[7]  A. Prohl Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system , 2008 .

[8]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[9]  Jean-Luc Guermond,et al.  Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method , 2009, J. Comput. Phys..

[10]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[11]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[12]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[13]  M. Discacciati Numerical Approximation of a Steady MHD Problem , 2008 .

[14]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[15]  Chen Greif,et al.  Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..

[16]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[17]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[18]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[19]  Dominik Schötzau,et al.  Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.

[20]  J. C. Simo,et al.  Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations☆ , 1996 .

[21]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[22]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[23]  L. Demkowicz,et al.  hp-adaptive finite elements in electromagnetics , 1999 .

[24]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[25]  Paul Houston,et al.  A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics , 2009, J. Sci. Comput..

[26]  Dan Li,et al.  Parallel numerical solution of the time-harmonic Maxwell equations in mixed form , 2012, Numer. Linear Algebra Appl..

[27]  P. Roberts An introduction to magnetohydrodynamics , 1967 .

[28]  Jinchao Xu,et al.  The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.

[29]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[30]  John N. Shadid,et al.  Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..

[31]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[32]  Jonathan J. Hu,et al.  ML 3.1 smoothed aggregation user's guide. , 2004 .

[33]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[34]  Ilaria Perugia,et al.  Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation , 2005, J. Sci. Comput..

[35]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[36]  Maxim A. Olshanskii,et al.  Pressure Schur Complement Preconditioners for the Discrete Oseen Problem , 2007, SIAM J. Sci. Comput..

[37]  Jean-Frédéric Gerbeau,et al.  A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.

[38]  Axel Klawonn,et al.  Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis , 1999, Numerische Mathematik.

[39]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[40]  Edmond Chow,et al.  Approximate Inverse Techniques for Block-Partitioned Matrices , 1997, SIAM J. Sci. Comput..

[41]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[42]  A. I. Nesliturk,et al.  Two‐level finite element method with a stabilizing subgrid for the incompressible MHD equations , 2009 .

[43]  Allen C. Robinson,et al.  An Improved Algebraic Multigrid Method for Solving Maxwell's Equations , 2003, SIAM J. Sci. Comput..

[44]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[45]  Ramon Codina,et al.  Stabilized Finite Element Approximation of the Stationary Magneto-Hydrodynamics Equations , 2006 .

[46]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[47]  Peter Arbenz,et al.  Introduction to parallel computing : a practical guide with examples in C , 2004 .

[48]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[49]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[50]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[51]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[52]  Panayot S. Vassilevski,et al.  PARALLEL AUXILIARY SPACE AMG FOR H(curl) PROBLEMS , 2009 .

[53]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[54]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[55]  Jean-Luc Guermond,et al.  Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements , 2011, Math. Comput..

[56]  Daniel A. White,et al.  FEMSTER: An object-oriented class library of high-order discrete differential forms , 2005, TOMS.

[57]  L. Ridgway Scott,et al.  Scientific Parallel Computing , 2005 .

[58]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[59]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[60]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[61]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[62]  Joachim Schöberl,et al.  An algebraic multigrid method for finite element discretizations with edge elements , 2002, Numer. Linear Algebra Appl..

[63]  Jean-Luc Guermond,et al.  Mixed finite element approximation of an MHD problem involving conducting and insulating regions: The 3D case , 2003 .

[64]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[65]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[66]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[67]  H. Elman,et al.  Efficient preconditioning of the linearized Navier-Stokes , 1999 .

[68]  Jim E. Jones,et al.  A Multigrid Method for Variable Coefficient Maxwell's Equations , 2006, SIAM J. Sci. Comput..

[69]  Dan Li Parallel Numerical Solution of the Time-Harmonic Maxwell Equations , 2009, HPCA.

[70]  D. Schötzau,et al.  Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .

[71]  D. Schötzau,et al.  A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics , 2010 .

[72]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[73]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[74]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .