Advances in cellular, subcellular, and nanoscale imaging in vitro and in vivo

This review focuses on technical advances in fluorescence microscopy techniques including laser scanning techniques, fluorescence‐resonance energy transfer (FRET) microscopy, fluorescence lifetime imaging (FLIM), stimulated emission depletion (STED)‐based super‐resolution microscopy, scanning confocal endomicroscopes, thin‐sheet laser imaging microscopy (TSLIM), and tomographic techniques such as early photon tomography (EPT) as well as on clinical laser‐based endoscopic and microscopic techniques. We will also discuss the new developments in the field of fluorescent dyes and fluorescent genetic reporters that enable new possibilities in high‐resolution and molecular imaging both in in vitro and in vivo. Small animal and tissue imaging benefit from the development of new fluorescent proteins, dyes, and sensing constructs that operate in the far red and near‐infrared spectrum. © 2010 International Society for Advancement of Cytometry

[1]  H. Shimada,et al.  Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Clegg FRET tells us about proximities, distances, orientations and dynamic properties. , 2002, Journal of biotechnology.

[3]  A. Coolen,et al.  The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients , 2009, Targeted Oncology.

[4]  E Grabbe,et al.  In vivo imaging in experimental preclinical tumor research–A review , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[5]  S. Hell,et al.  Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. , 2010, Biophysical journal.

[6]  Michael Z. Lin,et al.  Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome , 2009, Science.

[7]  H Szmacinski,et al.  Fluorescence lifetime imaging. , 1992, Analytical biochemistry.

[8]  Mark A A Neil,et al.  A fluorescence lifetime imaging scanning confocal endomicroscope , 2009, Journal of biophotonics.

[9]  C G Morgan,et al.  Measurement of nanosecond time‐resolved fluorescence with a directly gated interline CCD camera , 2002, Journal of microscopy.

[10]  Meng Yang,et al.  A transgenic red fluorescent protein‐expressing nude mouse for color‐coded imaging of the tumor microenvironment , 2009, Journal of cellular biochemistry.

[11]  L. Gerweck,et al.  Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics , 2006, Molecular Cancer Therapeutics.

[12]  F. Wouters,et al.  pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging. , 2008, Biochemistry.

[13]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[14]  Alessandro Sardini,et al.  Three-dimensional imaging of Förster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging. , 2009, Optics letters.

[15]  Robert M. Hoffman,et al.  The multiple uses of fluorescent proteins to visualize cancer in vivo , 2005, Nature Reviews Cancer.

[16]  James Sharpe,et al.  Fluorescence lifetime optical projection tomography , 2008, Journal of biophotonics.

[17]  Martin Chalfie,et al.  GFP: lighting up life (Nobel Lecture). , 2009, Angewandte Chemie.

[18]  D H Burns,et al.  Orthogonal‐plane fluorescence optical sectioning: Three‐dimensional imaging of macroscopic biological specimens , 1993, Journal of microscopy.

[19]  Kenneth P. Ghiggino,et al.  Fluorescence lifetime measurements using a novel fiber‐optic laser scanning confocal microscope , 1992 .

[20]  Fred S Wouters,et al.  Unsupervised Fluorescence Lifetime Imaging Microscopy for High Content and High Throughput Screening *S , 2007, Molecular & Cellular Proteomics.

[21]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[22]  Fred S. Wouters,et al.  The physics and biology of fluorescence microscopy in the life sciences , 2006 .

[23]  Y. Miyagi,et al.  Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. , 1997, Cancer research.

[24]  S. Hell,et al.  STED microscopy with continuous wave beams , 2007, Nature Methods.

[25]  M. Gertsenstein,et al.  Mouse in red: Red fluorescent protein expression in mouse ES cells, embryos, and adult animals , 2004, Genesis.

[26]  Vasilis Ntziachristos,et al.  Free-space fluorescence molecular tomography utilizing 360° geometry projections , 2007 .

[27]  Dietrich Schweitzer,et al.  Sodium fluorescein as a retinal pH indicator? , 2005, Physiological measurement.

[28]  Matthias Hillenbrand,et al.  Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. , 2009, BioTechniques.

[29]  M A A Neil,et al.  Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin , 2008, The British journal of dermatology.

[30]  Hua-bei Jiang,et al.  Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye. , 2002, Optics express.

[31]  D Barnes,et al.  Imaging protein kinase Calpha activation in cells. , 1999, Science.

[32]  D. R. Matthews,et al.  Deep-tissue multiphoton fluorescence lifetime microscopy for intravital imaging of protein-protein interactions , 2009, BiOS.

[33]  Hans C Gerritsen,et al.  Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics. , 2006, Journal of biomedical optics.

[34]  Vasilis Ntziachristos,et al.  Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo , 2008, Proceedings of the National Academy of Sciences.

[35]  Vasilis Ntziachristos,et al.  Complete-angle projection diffuse optical tomography by use of early photons. , 2005, Optics letters.

[36]  G. Weber Fluorescence in biophysics: accomplishments and deficiencies. , 1997, Methods in enzymology.

[37]  F. Wouters,et al.  Visualization of molecular activities inside living cells with fluorescent labels. , 2004, International review of cytology.

[38]  Hans C. Gerritsen,et al.  Fluorescence lifetime imaging using a confocal laser scanning microscope , 1992 .

[39]  Osamu Shimomura,et al.  Discovery of green fluorescent protein (GFP) (Nobel Lecture). , 2009, Angewandte Chemie.

[40]  S. Hell,et al.  STED microscopy with a supercontinuum laser source. , 2008, Optics express.

[41]  Borivoj Vojnovic,et al.  A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[43]  Meng Yang,et al.  Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  F. Wouters,et al.  All-solid-state lock-in imaging for wide-field fluorescence lifetime sensing. , 2005, Optics express.

[45]  E. Gaviola Ein Fluorometer. Apparat zur Messung von Fluoreszenzabklingungszeiten , 1927 .

[46]  David J. Miller,et al.  Diversity and Evolution of Coral Fluorescent Proteins , 2008, PloS one.

[47]  Robert M Hoffman,et al.  A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. , 2003, The Journal of surgical research.

[48]  Christian Eggeling,et al.  Macromolecular-scale resolution in biological fluorescence microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Peter J. Parker,et al.  Imaging Protein Kinase Cα Activation in Cells , 1999 .

[50]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[51]  David A Boas,et al.  Fluorescence-lifetime-based tomography for turbid media. , 2005, Optics letters.

[52]  D. Shcherbo,et al.  Bright far-red fluorescent protein for whole-body imaging , 2007, Nature Methods.

[53]  M. Eppstein,et al.  Three-dimensional fluorescence lifetime tomography. , 2005, Medical physics.

[54]  F. Wouters,et al.  Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[55]  Roger Y Tsien,et al.  Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). , 2009, Angewandte Chemie.

[56]  P. French,et al.  A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. , 2007, The Review of scientific instruments.

[57]  Meng Yang,et al.  Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. , 2005, BioTechniques.

[58]  Karsten König,et al.  Clinical multiphoton tomography , 2008, Journal of biophotonics.

[59]  Joseph R. Lakowicz,et al.  Lifetime‐selective fluorescence imaging using an rf phase‐sensitive camera , 1991 .