Bmc Structural Biology Relationship between Chemical Shift Value and Accessible Surface Area for All Amino Acid Atoms

BackgroundChemical shifts obtained from NMR experiments are an important tool in determining secondary, even tertiary, protein structure. The main repository for chemical shift data is the BioMagResBank, which provides NMR-STAR files with this type of information. However, it is not trivial to link this information to available coordinate data from the PDB for non-backbone atoms due to atom and chain naming differences, as well as sequence numbering changes.ResultsWe here describe the analysis of a consistent set of chemical shift and coordinate data, in which we focus on the relationship between the per-atom solvent accessible surface area (ASA) in the reported coordinates and their reported chemical shift value. The data is available online on http://www.ebi.ac.uk/pdbe/docs/NMR/shiftAnalysis/index.html.ConclusionAtoms with zero per-atom ASA have a significantly larger chemical shift dispersion and often have a different chemical shift distribution compared to those that are solvent accessible. With higher per-atom ASA, the chemical shift values also tend towards random coil values. The per-atom ASA, although not the determinant of the chemical shift, thus provides a way to directly correlate chemical shift information to the atomic coordinates.

[1]  Oliver F. Lange,et al.  Consistent blind protein structure generation from NMR chemical shift data , 2008, Proceedings of the National Academy of Sciences.

[2]  Wim Vranken,et al.  A global analysis of NMR distance constraints from the PDB , 2007, Journal of biomolecular NMR.

[3]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[4]  D. Wishart,et al.  The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data , 1994, Journal of biomolecular NMR.

[5]  David S. Wishart,et al.  PREDITOR: a web server for predicting protein torsion angle restraints , 2006, Nucleic Acids Res..

[6]  Haruki Nakamura,et al.  BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions , 2008, Journal of biomolecular NMR.

[7]  David S Wishart,et al.  NMR: prediction of protein flexibility , 2006, Nature Protocols.

[8]  David A. Case,et al.  Probing multiple effects on 15N, 13Cα, 13Cβ, and 13C′ chemical shifts in peptides using density functional theory , 2002 .

[9]  S. P. Mielke,et al.  An evaluation of chemical shift index-based secondary structure determination in proteins: Influence of random coil chemical shifts , 2004, Journal of biomolecular NMR.

[10]  Miron Livny,et al.  RECOORD: A recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank , 2005, Proteins.

[11]  Eric Oldfield,et al.  1H, 13C and 15N chemical shift referencing in biomolecular NMR , 1995, Journal of biomolecular NMR.

[12]  Eric Oldfield,et al.  Carbon-13 NMR shielding in the twenty common amino acids: comparisons with experimental results in proteins. , 2002, Journal of the American Chemical Society.

[13]  David A. Case,et al.  Analysis of proton chemical shifts in regular secondary structure of proteins , 1994, Journal of biomolecular NMR.

[14]  D. Case Calibration of ring-current effects in proteins and nucleic acids , 1995, Journal of biomolecular NMR.

[15]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[16]  D. Wishart,et al.  Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts , 2003, Journal of Biomolecular NMR.

[17]  T. N. Bhat,et al.  The CCPN project: an interim report on a data model for the NMR community , 2002, Nature Structural Biology.

[18]  F. Richards,et al.  The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. , 1992, Biochemistry.

[19]  Miron Livny,et al.  BioMagResBank , 2007, Nucleic Acids Res..

[20]  H. Scheraga,et al.  Factors affecting the use of 13Cα chemical shifts to determine, refine, and validate protein structures , 2008, Proteins.

[21]  K. Wüthrich,et al.  Protein conformation and proton nuclear-magnetic-resonance chemical shifts. , 1983, European journal of biochemistry.

[22]  P Argos,et al.  Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation. , 1996, Protein engineering.

[23]  C. Pipper,et al.  [''R"--project for statistical computing]. , 2008, Ugeskrift for laeger.

[24]  P. Wright,et al.  ‘Random coil’ 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG , 1995, Journal of biomolecular NMR.

[25]  Haruki Nakamura,et al.  Remediation of the protein data bank archive , 2007, Nucleic Acids Res..

[26]  Haruki Nakamura,et al.  The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data , 2006, Nucleic Acids Res..

[27]  Robert F. Boyko,et al.  Automated 1H and 13C chemical shift prediction using the BioMagResBank , 1997, Journal of biomolecular NMR.

[28]  David S. Wishart,et al.  CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data , 2008, Nucleic Acids Res..

[29]  M Michael Gromiha,et al.  Atom-wise statistics and prediction of solvent accessibility in proteins. , 2006, Biophysical chemistry.

[30]  Robert F. Boyko,et al.  CAMRA: Chemical shift based computer aided protein NMR assignments , 1998, Journal of biomolecular NMR.

[31]  D. Wishart,et al.  Protein chemical shift analysis: a practical guide. , 1998, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[32]  E. Oldfield,et al.  AB INITIO STUDIES OF AMIDE-15N CHEMICAL SHIFTS IN DIPEPTIDES : APPLICATIONS TO PROTEIN NMR SPECTROSCOPY , 1996 .

[33]  R. L. Baldwin,et al.  Protein chemical shifts arising from α-helices and β-sheets depend on solvent exposure , 2004 .

[34]  D. Case,et al.  Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory. , 2002, Biopolymers.

[35]  Mark Berjanskii,et al.  Accurate prediction of protein torsion angles using chemical shifts and sequence homology , 2006, Magnetic resonance in chemistry : MRC.

[36]  Fred L. Drake,et al.  The Python Language Reference Manual , 1999 .

[37]  F. Richards,et al.  Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. , 1991, Journal of molecular biology.

[38]  Dmitrij Frishman,et al.  STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins , 2004, Nucleic Acids Res..

[39]  Michele Vendruscolo,et al.  Protein structure determination from NMR chemical shifts , 2007, Proceedings of the National Academy of Sciences.

[40]  David S. Wishart,et al.  Application of the random coil index to studying protein flexibility , 2008, Journal of biomolecular NMR.