Optimal probes and error-correction schemes in multi-parameter quantum metrology.

We derive a necessary and sufficient condition for the possibility of preserving the Heisenberg scaling in general adaptive multi-parameter estimation schemes in presence of Markovian noise. In situations where the Heisenberg scaling can be preserved, we provide a quadratic semidefinite program to identify the optimal quantum error correcting (QEC) protocol that yields the best estimation precision. We overcome the technical challenges associated with potential incompatibility of the measurement optimally extracting information on different parameters by utilizing the Holevo Cram\'er-Rao (HCR) bound for pure states (Matsumoto theorem). We provide examples of significant advantages offered by joint-parameter QEC protocols, that sense all the parameters utilizing a single error-protected subspace, over separate-parameter QEC protocols where each parameter is effectively sensed in a separate subspace.

[1]  Manuel Gessner,et al.  Sensitivity Bounds for Multiparameter Quantum Metrology. , 2018, Physical review letters.

[2]  M. Lukin,et al.  Quantum error correction for metrology. , 2013, Physical review letters.

[3]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[5]  Carlton M. Caves,et al.  Fundamental quantum limit to waveform estimation , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[6]  Jing Liu,et al.  Control-enhanced multiparameter quantum estimation , 2017, 1710.06741.

[7]  M. Markham,et al.  Quantum Metrology Enhanced by Repetitive Quantum Error Correction. , 2016, Physical review letters.

[8]  Rafal Demkowicz-Dobrzanski,et al.  Multi-parameter estimation beyond quantum Fisher information , 2020, Journal of Physics A: Mathematical and Theoretical.

[9]  Multi-Parameter Pure State Estimation Based on the Right Logarithmic Derivative , 1994 .

[10]  Dominic W Berry,et al.  Stochastic Heisenberg limit: optimal estimation of a fluctuating phase. , 2013, Physical review letters.

[11]  K. C. Tan,et al.  Quantum-error-correction-assisted quantum metrology without entanglement , 2019, Physical Review A.

[12]  P. Zoller,et al.  Dissipative quantum error correction and application to quantum sensing with trapped ions , 2017, Nature Communications.

[13]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[14]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[15]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[16]  Liang Jiang,et al.  Optimal approximate quantum error correction for quantum metrology , 2019 .

[17]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.

[18]  Masahito Hayashi Introduction to Quantum Statistical Inference , 2005 .

[19]  Paola Cappellaro,et al.  Spatial noise filtering through error correction for quantum sensing , 2017, npj Quantum Information.

[20]  Haidong Yuan,et al.  Fluctuation-enhanced quantum metrology. , 2020, 2003.13010.

[21]  Roman Schnabel,et al.  Squeezed states of light and their applications in laser interferometers , 2016, 1611.03986.

[22]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[23]  Gerardo Adesso,et al.  Multiparameter Gaussian quantum metrology , 2017, Physical Review A.

[24]  Masahito Ueda,et al.  Finite-error metrological bounds on multiparameter Hamiltonian estimation , 2017, 1708.09556.

[25]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[26]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[27]  Liang Jiang,et al.  The theory of entanglement-assisted metrology for quantum channels , 2020, 2003.10559.

[28]  Zachary Eldredge,et al.  Distributed Quantum Metrology with Linear Networks and Separable Inputs , 2018 .

[29]  Sammy Ragy,et al.  Compatibility in multiparameter quantum metrology , 2016, 1608.02634.

[30]  Howard M. Wiseman,et al.  π-Corrected Heisenberg Limit. , 2019, Physical review letters.

[31]  Kirk McKenzie,et al.  Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.

[32]  Paola Cappellaro,et al.  Ancilla-Free Quantum Error Correction Codes for Quantum Metrology. , 2018, Physical review letters.

[33]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[34]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[35]  Haidong Yuan Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation. , 2016, Physical review letters.

[36]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[37]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[38]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[39]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[40]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[41]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[42]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[43]  Francesco Albarelli,et al.  Evaluating the Holevo Cramér-Rao Bound for Multiparameter Quantum Metrology. , 2019, Physical review letters.

[44]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.

[45]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[46]  Edward H. Chen,et al.  True Limits to Precision via Unique Quantum Probe , 2014 .

[47]  Hiroshi Imai,et al.  A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .

[48]  Seth Lloyd,et al.  Advances in photonic quantum sensing , 2018, Nature Photonics.

[49]  Jan Kolodynski,et al.  Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.

[50]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[51]  Richard D. Gill,et al.  Quantum local asymptotic normality based on a new quantum likelihood ratio , 2012, 1210.3749.

[52]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[53]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[54]  Pavel Sekatski,et al.  Quantum metrology with full and fast quantum control , 2016, 1603.08944.

[55]  Mankei Tsang,et al.  Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.

[56]  Keiji matsumoto A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .

[57]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[58]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[59]  Animesh Datta,et al.  Fault-tolerant quantum metrology , 2018, Physical Review A.

[60]  J. Preskill,et al.  Achieving the Heisenberg limit in quantum metrology using quantum error correction , 2017, Nature Communications.

[61]  A. Jenčová,et al.  Local Asymptotic Normality in Quantum Statistics , 2006, quant-ph/0606213.

[62]  S. Bartlett,et al.  Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.

[63]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[64]  Lorenzo Maccone,et al.  Using entanglement against noise in quantum metrology. , 2014, Physical review letters.

[65]  M. G. A. Paris,et al.  Optimal estimation of joint parameters in phase space , 2012, 1206.4867.

[66]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[67]  R. Ozeri Heisenberg limited metrology using Quantum Error-Correction Codes , 2013, 1310.3432.

[68]  Jun Suzuki,et al.  Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem , 2015, 1505.06437.

[69]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[70]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[71]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[72]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[73]  J. Czajkowski,et al.  Adaptive quantum metrology under general Markovian noise , 2017, 1704.06280.

[74]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.