Optimal probes and error-correction schemes in multi-parameter quantum metrology.
暂无分享,去创建一个
[1] Manuel Gessner,et al. Sensitivity Bounds for Multiparameter Quantum Metrology. , 2018, Physical review letters.
[2] M. Lukin,et al. Quantum error correction for metrology. , 2013, Physical review letters.
[3] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[4] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[5] Carlton M. Caves,et al. Fundamental quantum limit to waveform estimation , 2010, CLEO: 2011 - Laser Science to Photonic Applications.
[6] Jing Liu,et al. Control-enhanced multiparameter quantum estimation , 2017, 1710.06741.
[7] M. Markham,et al. Quantum Metrology Enhanced by Repetitive Quantum Error Correction. , 2016, Physical review letters.
[8] Rafal Demkowicz-Dobrzanski,et al. Multi-parameter estimation beyond quantum Fisher information , 2020, Journal of Physics A: Mathematical and Theoretical.
[9] Multi-Parameter Pure State Estimation Based on the Right Logarithmic Derivative , 1994 .
[10] Dominic W Berry,et al. Stochastic Heisenberg limit: optimal estimation of a fluctuating phase. , 2013, Physical review letters.
[11] K. C. Tan,et al. Quantum-error-correction-assisted quantum metrology without entanglement , 2019, Physical Review A.
[12] P. Zoller,et al. Dissipative quantum error correction and application to quantum sensing with trapped ions , 2017, Nature Communications.
[13] E. Sudarshan,et al. Completely Positive Dynamical Semigroups of N Level Systems , 1976 .
[14] Holland,et al. Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.
[15] Animesh Datta,et al. Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.
[16] Liang Jiang,et al. Optimal approximate quantum error correction for quantum metrology , 2019 .
[17] A Retzker,et al. Increasing sensing resolution with error correction. , 2013, Physical review letters.
[18] Masahito Hayashi. Introduction to Quantum Statistical Inference , 2005 .
[19] Paola Cappellaro,et al. Spatial noise filtering through error correction for quantum sensing , 2017, npj Quantum Information.
[20] Haidong Yuan,et al. Fluctuation-enhanced quantum metrology. , 2020, 2003.13010.
[21] Roman Schnabel,et al. Squeezed states of light and their applications in laser interferometers , 2016, 1611.03986.
[22] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[23] Gerardo Adesso,et al. Multiparameter Gaussian quantum metrology , 2017, Physical Review A.
[24] Masahito Ueda,et al. Finite-error metrological bounds on multiparameter Hamiltonian estimation , 2017, 1708.09556.
[25] Moore,et al. Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[26] Raymond Laflamme,et al. A Theory of Quantum Error-Correcting Codes , 1996 .
[27] Liang Jiang,et al. The theory of entanglement-assisted metrology for quantum channels , 2020, 2003.10559.
[28] Zachary Eldredge,et al. Distributed Quantum Metrology with Linear Networks and Separable Inputs , 2018 .
[29] Sammy Ragy,et al. Compatibility in multiparameter quantum metrology , 2016, 1608.02634.
[30] Howard M. Wiseman,et al. π-Corrected Heisenberg Limit. , 2019, Physical review letters.
[31] Kirk McKenzie,et al. Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.
[32] Paola Cappellaro,et al. Ancilla-Free Quantum Error Correction Codes for Quantum Metrology. , 2018, Physical review letters.
[33] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[34] G. Tóth,et al. Quantum metrology from a quantum information science perspective , 2014, 1405.4878.
[35] Haidong Yuan. Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation. , 2016, Physical review letters.
[36] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[37] J. Kołodyński,et al. Quantum limits in optical interferometry , 2014, 1405.7703.
[38] K. Banaszek,et al. Quantum phase estimation with lossy interferometers , 2009, 0904.0456.
[39] L. Pezzè,et al. Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.
[40] P. Humphreys,et al. Quantum enhanced multiple phase estimation. , 2013, Physical review letters.
[41] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.
[42] Wiseman,et al. Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.
[43] Francesco Albarelli,et al. Evaluating the Holevo Cramér-Rao Bound for Multiparameter Quantum Metrology. , 2019, Physical review letters.
[44] R. Gill,et al. State estimation for large ensembles , 1999, quant-ph/9902063.
[45] F. Reinhard,et al. Quantum sensing , 2016, 1611.02427.
[46] Edward H. Chen,et al. True Limits to Precision via Unique Quantum Probe , 2014 .
[47] Hiroshi Imai,et al. A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .
[48] Seth Lloyd,et al. Advances in photonic quantum sensing , 2018, Nature Photonics.
[49] Jan Kolodynski,et al. Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.
[50] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[51] Richard D. Gill,et al. Quantum local asymptotic normality based on a new quantum likelihood ratio , 2012, 1210.3749.
[52] Rafał Demkowicz-Dobrzański,et al. The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.
[53] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[54] Pavel Sekatski,et al. Quantum metrology with full and fast quantum control , 2016, 1603.08944.
[55] Mankei Tsang,et al. Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.
[56] Keiji matsumoto. A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .
[57] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[58] R. Xu,et al. Theory of open quantum systems , 2002 .
[59] Animesh Datta,et al. Fault-tolerant quantum metrology , 2018, Physical Review A.
[60] J. Preskill,et al. Achieving the Heisenberg limit in quantum metrology using quantum error correction , 2017, Nature Communications.
[61] A. Jenčová,et al. Local Asymptotic Normality in Quantum Statistics , 2006, quant-ph/0606213.
[62] S. Bartlett,et al. Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.
[63] Jonathan P. Dowling,et al. A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.
[64] Lorenzo Maccone,et al. Using entanglement against noise in quantum metrology. , 2014, Physical review letters.
[65] M. G. A. Paris,et al. Optimal estimation of joint parameters in phase space , 2012, 1206.4867.
[66] J. Cirac,et al. Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.
[67] R. Ozeri. Heisenberg limited metrology using Quantum Error-Correction Codes , 2013, 1310.3432.
[68] Jun Suzuki,et al. Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem , 2015, 1505.06437.
[69] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[70] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[71] B. Kraus,et al. Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.
[72] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[73] J. Czajkowski,et al. Adaptive quantum metrology under general Markovian noise , 2017, 1704.06280.
[74] D. Leibfried,et al. Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.