Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling.

[1]  A. DeMaria,et al.  Abnormal left ventricular diastolic filling in chronic thromboembolic pulmonary hypertension: true diastolic dysfunction or left ventricular underfilling? , 2007, Journal of the American College of Cardiology.

[2]  M. Simon,et al.  Right ventricular dyssynchrony in heart failure: a tissue Doppler imaging study. , 2006, Journal of cardiac failure.

[3]  Nico Westerhof,et al.  Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. , 2006, American journal of physiology. Heart and circulatory physiology.

[4]  G. Buckberg,et al.  The septal motor of biventricular function. , 2006, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[5]  J. Marcus,et al.  Interventricular mechanical asynchrony due to right ventricular pressure overload in pulmonary hypertension plays an important role in impaired left ventricular filling. , 2005, Chest.

[6]  J. Gorcsan,et al.  Right ventricular dyssynchrony in patients with pulmonary hypertension is associated with disease severity and functional class , 2005, Cardiovascular ultrasound.

[7]  K. Dohi,et al.  Relation of right ventricular free wall mechanical delay to right ventricular dysfunction as determined by tissue Doppler imaging. , 2005, The American journal of cardiology.

[8]  J. Marcus,et al.  Interventricular septal configuration at mr imaging and pulmonary arterial pressure in pulmonary hypertension. , 2005, Radiology.

[9]  L. Axel,et al.  Quantification of the curvature and shape of the interventricular septum , 2004, Magnetic resonance in medicine.

[10]  R M Heethaar,et al.  Timing of cardiac contraction in humans mapped by high-temporal-resolution MRI tagging: early onset and late peak of shortening in lateral wall. , 2004, American journal of physiology. Heart and circulatory physiology.

[11]  J. Zwanenburg,et al.  Steady‐state free precession with myocardial tagging: CSPAMM in a single breathhold , 2003, Magnetic resonance in medicine.

[12]  S. Plein,et al.  Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady‐state free precession imaging sequences , 2003, Journal of magnetic resonance imaging : JMRI.

[13]  J. Marcus,et al.  Impaired left ventricular filling due to right ventricular pressure overload in primary pulmonary hypertension: noninvasive monitoring using MRI. , 2001, Chest.

[14]  N G Shrive,et al.  Compression of interventricular septum during right ventricular pressure loading. , 2001, American journal of physiology. Heart and circulatory physiology.

[15]  J M Norton,et al.  Toward consistent definitions for preload and afterload. , 2001, Advances in physiology education.

[16]  Jerry L Prince,et al.  Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[17]  M. Rubenfire,et al.  Echocardiographic predictors of an adverse response to a nifedipine trial in primary pulmonary hypertension: diminished left ventricular size and leftward ventricular septal bowing. , 1999, Chest.

[18]  R Beyar,et al.  Ventricular interaction and septal deformation: a model compared with experimental data. , 1993, The American journal of physiology.

[19]  S. Dong,et al.  Changes in the Radius of Curvature of the Ventricular Septum at End Diastole During Pulmonary Arterial and Aortic Constrictions in the Dog , 1992, Circulation.

[20]  D. Gibson,et al.  Left ventricular filling characteristics in pulmonary hypertension: a new mode of ventricular interaction , 1992, British heart journal.

[21]  W H Rijnsburger,et al.  Sarcomere length control in striated muscle. , 1982, The American journal of physiology.