Relative Pose Estimation for Instrumented, Calibrated Imaging Platforms

Recent efforts in robust estimation of the two-view relation have fo- cused on uncalibrated cameras with no prior knowledge of pose. However, in practice robotic vehicles that perform image-based navigation and mapping typi- cally do carry a calibrated camera and pose sensors; this additional knowledge is currently not being exploited. This paper presents three contributions in using vision with instrumented and cal- ibrated platforms. First, we improve the performace of the correspondence stage by using uncertain measurements from egomotion sensors to constrain possible matches. Second, we assume wide-baseline conditions and propose Zernike mo- ments to describe affine invariant features. Third, we robustly estimate the essen- tial matrix with a new 6-point algorithm. Our solution is simpler than the minimal 5-point one and, unlike the linear 6-point solution, does not fail on planar scenes. While the contributions are general, we present structure and motion results from an underwater robotic survey.

[1]  Xavier Pennec,et al.  A Framework for Uncertainty and Validation of 3-D Registration Methods Based on Points and Frames , 2004, International Journal of Computer Vision.

[2]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  Andrew W. Fitzgibbon,et al.  The Problem of Degeneracy in Structure and Motion Recovery from Uncalibrated Image Sequences , 1999, International Journal of Computer Vision.

[5]  Michael Bosse,et al.  An Atlas framework for scalable mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[6]  Michael Carsten Bosse,et al.  A VISION AUGMENTED NAVIGATION SYSTEM FOR AN AUTONOMOUS HELICOPTER , 1997 .

[7]  Olivier D. Faugeras,et al.  Motion from point matches: Multiplicity of solutions , 2004, International Journal of Computer Vision.

[8]  Berthold K. P. Horn Relative orientation , 1987, International Journal of Computer Vision.

[9]  Reinhard Koch,et al.  Metric 3D Surface Reconstruction from Uncalibrated Image Sequences , 1998, SMILE.

[10]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[11]  Zhengyou Zhang,et al.  On the Optimization Criteria Used in Two-View Motion Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Bill Triggs Routines for Relative Pose of Two Calibrated Cameras from 5 Points , 2000 .

[14]  J. Philip A non-iterative algorithm for determining all essential matrices corresponding to five point pairs , 1996 .

[15]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[16]  Yoshiaki Shirai,et al.  Three-Dimensional Computer Vision , 1987, Symbolic Computation.

[17]  Andrew J. Davison,et al.  Mobile Robot Navigation Using Active Vision , 1998 .

[18]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[19]  Luc Van Gool,et al.  Recognizing color patterns irrespective of viewpoint and illumination , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[20]  Whoi-Yul Kim,et al.  A region-based shape descriptor using Zernike moments , 2000, Signal Process. Image Commun..

[21]  Seth J. Teller,et al.  Scalable Extrinsic Calibration of Omni-Directional Image Networks , 2002, International Journal of Computer Vision.