Mixed isogeometric collocation methods for the simulation of poromechanics problems in 1D

Isogeometric collocation is for the first time considered as a simulation tool for fluid-saturated porous media. Accordingly, with a focus on one-dimensional problems, a mixed collocation approach is proposed and tested in demanding situations, on both quasi-static and dynamic benchmarks. The developed method is proven to be very effective in terms of both stability and accuracy. In fact, the peculiar properties of the spline shape functions typical of isogeometric methods, along with the ease of implementation and low computational cost guaranteed by the collocation framework, make the proposed approach very attractive as a viable alternative to Galerkin-based approaches classically adopted in computational poromechanics.

[1]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[2]  Giancarlo Sangalli,et al.  Optimal-order isogeometric collocation at Galerkin superconvergent points , 2016, 1609.01971.

[3]  K. Terzaghi Erdbaumechanik : auf bodenphysikalischer Grundlage , 1925 .

[4]  M. Schanz,et al.  Wave propagation in a simplified modelled poroelastic continuum: fundamental solutions and a time domain boundary element formulation , 2005 .

[5]  Laura De Lorenzis,et al.  The variational collocation method , 2016 .

[6]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[7]  Alessandro Reali,et al.  Isogeometric collocation methods for the Reissner–Mindlin plate problem , 2015 .

[8]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[9]  Alessandro Reali,et al.  Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation , 2017, Comput. Math. Appl..

[10]  Thomas J. R. Hughes,et al.  Isogeometric collocation for large deformation elasticity and frictional contact problems , 2015 .

[11]  Hywel Rhys Thomas,et al.  Minimum time-step size for diffusion problem in FEM analysis , 1997 .

[12]  Timon Rabczuk,et al.  An isogeometric collocation method using superconvergent points , 2015 .

[13]  C. Callari,et al.  Hyperelastic Multiphase Porous Media with Strain-Dependent Retention Laws , 2011 .

[14]  S. Kelly,et al.  Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .

[15]  Alessandro Reali,et al.  Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations , 2013 .

[16]  Hendrik Speleers,et al.  Isogeometric collocation methods with generalized B-splines , 2015, Comput. Math. Appl..

[17]  O. Zienkiewicz,et al.  Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution , 1984 .

[18]  Pieter A. Vermeer,et al.  An accuracy condition for consolidation by finite elements , 1981 .

[19]  Abimael F. D. Loula,et al.  On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .

[20]  Time step constraints in finite element analysis of the Poisson type equation , 1989 .

[21]  Alessandro Reali,et al.  An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .

[22]  Richard A. Regueiro,et al.  Dynamics of porous media at finite strain , 2004 .

[23]  Juan M. Pestana-Nascimento Computational Geomechanics with Special Reference to Earthquake Engineering by O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. A. Schrefler and T. Shiomi ISBN 0471‐98285‐7; Wiley, Chichester, 1999; Price: £100.00, US $180.00 , 2000 .

[24]  John A. Evans,et al.  Isogeometric collocation: Neumann boundary conditions and contact , 2015 .

[25]  C. Callari,et al.  Finite element methods for unsaturated porous solids and their application to dam engineering problems , 2009 .

[26]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[27]  O. C. Zienkiewicz,et al.  DRAINED, UNDRAINED, CONSOLIDATING AND DYNAMIC BEHAVIOUR ASSUMPTIONS IN SOILS , 1980 .

[28]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[29]  Cv Clemens Verhoosel,et al.  Isogeometric finite element analysis of poroelasticity , 2013 .

[30]  Renato Vitaliani,et al.  Evaluation of three‐ and two‐field finite element methods for the dynamic response of saturated soil , 1994 .

[31]  Isaac Harari,et al.  Stability of semidiscrete formulations for parabolic problems at small time steps , 2004 .

[32]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[33]  Bernard Schrefler,et al.  A thermo‐hydro‐mechanical model for multiphase geomaterials in dynamics with application to strain localization simulation , 2016 .

[34]  F. Auricchio,et al.  Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .

[35]  Joachim Berdal Haga,et al.  On the causes of pressure oscillations in low‐permeable and low‐compressible porous media , 2012 .

[36]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[37]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[38]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[39]  C. Callari,et al.  Finite element formulation of unilateral boundary conditions for unsaturated flow in porous continua , 2014 .

[40]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[41]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[42]  Susana López-Querol,et al.  Numerical modelling of dynamic consolidation on granular soils , 2008 .

[43]  Bernard Schrefler,et al.  On convergence conditions of partitioned solution procedures for consolidation problems , 1993 .

[44]  Alessandro Reali,et al.  A displacement-free formulation for the Timoshenko beam problem and a corresponding isogeometric collocation approach , 2018 .

[45]  Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity model , 2001 .