Spurious structures in chaos indicators maps

Abstract The paper confronts chaos indicators of two basic types: spectral methods and variational methods. The spectral methods include the spectral numbers and the integrated autocorrelation function. Variational methods discussed are FLI, MEGNO and OFLI2. Using an ad hoc model of coupled pendulum we demonstrate various spurious patterns that appear in the maps of the chaos indicators. Spectral methods generate spurious Moire fringes, whereas variational methods are sensitive to the integration time or – in the case of the first-order variations indicators – to the initial direction of the variations vector. An example of major discrepancy between the two kinds of methods is given for an unstable periodic orbit. The influence of the initial variations vector is explained in the context of Lyapunov vectors theory and some selection rules are recommended.

[1]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[2]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[3]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[4]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[5]  Robert L. Devaney Pallarés An introduction to chaotic dynamical systems , 1989 .

[6]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[7]  H. Schuster Deterministic chaos: An introduction , 1984 .

[8]  Measuring transient chaos in nonlinear one- and two-dimensional maps , 2006 .

[9]  Hans-Dieter Meyer,et al.  Theory of the Liapunov exponents of Hamiltonian systems and a numerical study on the transition from regular to irregular classical motion , 1986 .

[10]  Robert Zemsky,et al.  FORTRAN PROGRAMMING FOR THE BEHAVIORAL SCIENCES , 1968 .

[11]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[12]  Andrzej J. Maciejewski,et al.  Global dynamics of planetary systems with the MEGNO criterion , 2001 .

[13]  B. Melendo,et al.  Long-term predictability of orbits around the geosynchronous altitude , 2005 .

[14]  Roberto Barrio,et al.  Qualitative analysis of the (N + 1)-body ring problem , 2008 .

[15]  J. Sprott Chaos and time-series analysis , 2001 .

[16]  Luca Dieci,et al.  Lyapunov and other spectra : a survey ∗ , 2007 .

[17]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[18]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[19]  S. Ferraz-Mello,et al.  Resonant Structure of the Outer Solar System in the Neighborhood of the Planets , 2001 .

[20]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[21]  Elena Lega,et al.  On the Structure of Symplectic Mappings. The Fast Lyapunov Indicator: a Very Sensitive Tool , 2000 .

[22]  K. Gozdziewski,et al.  Stability of the HD 12661 Planetary System , 2003 .

[23]  Irina Bashkirtseva,et al.  Sensitivity and chaos control for the forced nonlinear oscillations , 2005 .

[24]  Elena Lega,et al.  On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows , 2002 .

[25]  Celso Grebogi,et al.  A direct numerical method for quantifying regular and chaotic orbits , 2004 .

[26]  Isaac Amidror,et al.  The Theory of the Moiré Phenomenon , 2000, Computational Imaging and Vision.

[27]  T. Iwai,et al.  Geometric approach to Lyapunov analysis in Hamiltonian dynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[29]  Roberto Barrio,et al.  Sensitivity Analysis of ODES/DAES Using the Taylor Series Method , 2005, SIAM J. Sci. Comput..

[30]  An analysis of chaos via contact transformation , 2003, nlin/0305042.

[31]  B. Melendo,et al.  Synchronous motion in the Kinoshita problem - Application to satellites and binary asteroids , 2005 .

[32]  W. Press Numerical recipes in Fortran 77 : the art of scientific computing : volume 1 of fortran numerical recipes , 1996 .

[33]  V. Mcgee,et al.  Fortran Programming for the Behavioral Sciences , 1967 .

[34]  M. Szydłowski Chaos and time coordinate , 1996 .

[35]  Roberto Barrio,et al.  Painting Chaos: a Gallery of Sensitivity Plots of Classical Problems , 2006, Int. J. Bifurc. Chaos.

[36]  Sven Sahle,et al.  A robust, locally interpretable algorithm for Lyapunov exponents , 2003 .

[37]  Jacques Laskar,et al.  The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping , 1992 .

[38]  Roberto Barrio,et al.  VSVO formulation of the taylor method for the numerical solution of ODEs , 2005 .

[39]  Hermann Haken,et al.  At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point , 1983 .

[40]  Roberto Barrio,et al.  Sensitivity tools vs. Poincaré sections , 2005 .

[41]  Jean-Luc Thiffeault,et al.  Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions. , 2000, Chaos.

[42]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[43]  P. M. Cincotta,et al.  Simple tools to study global dynamics in non-axisymmetric galactic potentials – I , 2000 .

[44]  Michael Wahl,et al.  Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. , 2003, Optics express.

[45]  Changpin Li,et al.  A new method of determining chaos-parameter-region for the tent map , 2004 .

[46]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[47]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[48]  A. Maciejewski,et al.  An efficient method for studying the stability and dynamics of the rotational motions of celestial bodies , 2003 .