Symmetry preserving discretization of ordinary differential equations. Large symmetry groups and higher order equations
暂无分享,去创建一个
Rutwig Campoamor-Stursberg | Pavel Winternitz | P. Winternitz | Miguel A. Rodr'iguez | R. Campoamor-Stursberg | M. Rodríguez | P. Winternitz
[1] Peter J. Olver,et al. Symmetries and Integrability of Difference Equations , 1999 .
[2] F. Valiquette,et al. Invariant discretization of partial differential equations admitting infinite-dimensional symmetry groups , 2014, 1401.4380.
[3] D. Levi,et al. Structure preserving discretizations of the Liouville equation and their numerical tests , 2015, 1504.01953.
[4] Lie symmetries and exact solutions of first-order difference schemes , 2004, nlin/0402047.
[5] E. Cartan,et al. La théorie des groupes finis et continus et la Géométrie différentielle traitées par la méthode du repère mobile : leçons professées à la Sorbonne , 1937 .
[6] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[7] P. Olver,et al. Lie algebras of vector fields in the real plane , 1992 .
[8] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[9] Peter J. Olvery. Moving Frames - in Geometry, Algebra, Computer Vision, and Numerical Analysis , 2000 .
[10] P. Winternitz,et al. The adjoint equation method for constructing first integrals of difference equations , 2015 .
[11] V. Dorodnitsyn. Applications of Lie Groups to Difference Equations , 2010 .
[12] Symmetries of Discrete Systems , 2003, nlin/0309058.
[13] Roman Kozlov,et al. Lie group classification of second-order ordinary difference equations , 2000 .
[14] V. Dorodnitsyn,et al. A Heat Transfer with a Source: the Complete Set of Invariant Difference Schemes , 2003, math/0309139.
[15] F. Valiquette,et al. Symmetry preserving numerical schemes for partial differential equations and their numerical tests , 2011, 1110.5921.
[16] Miguel A. Rodriguez,et al. Construction of partial difference schemes: I. The Clairaut, Schwarz, Young theorem on the lattice , 2013 .
[17] D. Levi,et al. On the construction of partial difference schemes II: discrete variables and invariant schemes , 2014, 1407.0838.
[18] D. Levi,et al. Lie-point symmetries of the discrete Liouville equation , 2014, 1407.4043.
[19] Continuous symmetries of Lagrangians and exact solutions of discrete equations , 2003, nlin/0307042.
[20] D. Levi,et al. Continuous symmetries of discrete equations , 1991 .
[21] P. Winternitz,et al. Invariant difference schemes and their application to invariant ordinary differential equations , 2009, 0906.2980.
[22] Peter E. Hydon,et al. Difference Equations by Differential Equation Methods , 2014 .
[23] A. Iserles,et al. Lie-group methods , 2000, Acta Numerica.
[24] E. Atlee Jackson,et al. The Schwarzian derivative , 1989 .
[25] G. Quispel,et al. Geometric integrators for ODEs , 2006 .
[26] D. Levi,et al. Continuous symmetries of difference equations , 2005, nlin/0502004.
[27] P. Winternitz,et al. Discretization of partial differential equations preserving their physical symmetries , 2005, math-ph/0507061.
[28] P. Olver,et al. Moving Coframes: I. A Practical Algorithm , 1998 .
[29] Roberto Floreanini,et al. Lie symmetries of finite‐difference equations , 1995 .
[30] D. Levi,et al. Lie symmetries of multidimensional difference equations , 2001, 0709.3238.
[31] D. Levi,et al. Lie point symmetries of difference equations and lattices , 2000, 0709.3112.
[32] Reinout Quispel,et al. Geometric Numerical Integration of Differential Equations , 2006 .
[33] Chris Budd,et al. Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation , 2001 .
[34] P. J. Olver,et al. Foundations of Computational Mathematics: Moving frames — in geometry, algebra, computer vision, and numerical analysis , 2001 .
[35] S. Lie,et al. Classification und Integration von gewhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten: Die nachstehende Arbeit erschien zum ersten Male im Frhling 1883 im norwegischen Archiv , 1888 .
[36] P. Winternitz,et al. The Korteweg–de Vries equation and its symmetry-preserving discretization , 2014, 1409.4340.
[37] Vladimir Dorodnitsyn,et al. Lie Point Symmetry Preserving Discretizations for Variable Coefficient Korteweg–de Vries Equations , 2000 .
[38] P. Olver,et al. Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .
[39] Difference schemes with point symmetries and their numerical tests , 2006, math-ph/0602057.
[40] V. Dorodnitsyn. Transformation groups in net spaces , 1991 .