Symmetry preserving discretization of ordinary differential equations. Large symmetry groups and higher order equations

Ordinary differential equations (ODEs) and ordinary difference systems (O$\Delta$Ss) invariant under the actions of the Lie groups $\mathrm{SL}_x(2)$, $\mathrm{SL}_y(2)$ and $\mathrm{SL}_x(2)\times\mathrm{SL}_y(2)$ of projective transformations of the independent variables $x$ and dependent variables $y$ are constructed. The ODEs are continuous limits of the O$\Delta$Ss, or conversely, the O$\Delta$Ss are invariant discretizations of the ODEs. The invariant O$\Delta$Ss are used to calculate numerical solutions of the invariant ODEs of order up to five. The solutions of the invariant numerical schemes are compared to numerical solutions obtained by standard Runge-Kutta methods and to exact solutions, when available. The invariant method performs at least as well as standard ones and much better in the vicinity of singularities of solutions.

[1]  Peter J. Olver,et al.  Symmetries and Integrability of Difference Equations , 1999 .

[2]  F. Valiquette,et al.  Invariant discretization of partial differential equations admitting infinite-dimensional symmetry groups , 2014, 1401.4380.

[3]  D. Levi,et al.  Structure preserving discretizations of the Liouville equation and their numerical tests , 2015, 1504.01953.

[4]  Lie symmetries and exact solutions of first-order difference schemes , 2004, nlin/0402047.

[5]  E. Cartan,et al.  La théorie des groupes finis et continus et la Géométrie différentielle traitées par la méthode du repère mobile : leçons professées à la Sorbonne , 1937 .

[6]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[7]  P. Olver,et al.  Lie algebras of vector fields in the real plane , 1992 .

[8]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[9]  Peter J. Olvery Moving Frames - in Geometry, Algebra, Computer Vision, and Numerical Analysis , 2000 .

[10]  P. Winternitz,et al.  The adjoint equation method for constructing first integrals of difference equations , 2015 .

[11]  V. Dorodnitsyn Applications of Lie Groups to Difference Equations , 2010 .

[12]  Symmetries of Discrete Systems , 2003, nlin/0309058.

[13]  Roman Kozlov,et al.  Lie group classification of second-order ordinary difference equations , 2000 .

[14]  V. Dorodnitsyn,et al.  A Heat Transfer with a Source: the Complete Set of Invariant Difference Schemes , 2003, math/0309139.

[15]  F. Valiquette,et al.  Symmetry preserving numerical schemes for partial differential equations and their numerical tests , 2011, 1110.5921.

[16]  Miguel A. Rodriguez,et al.  Construction of partial difference schemes: I. The Clairaut, Schwarz, Young theorem on the lattice , 2013 .

[17]  D. Levi,et al.  On the construction of partial difference schemes II: discrete variables and invariant schemes , 2014, 1407.0838.

[18]  D. Levi,et al.  Lie-point symmetries of the discrete Liouville equation , 2014, 1407.4043.

[19]  Continuous symmetries of Lagrangians and exact solutions of discrete equations , 2003, nlin/0307042.

[20]  D. Levi,et al.  Continuous symmetries of discrete equations , 1991 .

[21]  P. Winternitz,et al.  Invariant difference schemes and their application to invariant ordinary differential equations , 2009, 0906.2980.

[22]  Peter E. Hydon,et al.  Difference Equations by Differential Equation Methods , 2014 .

[23]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[24]  E. Atlee Jackson,et al.  The Schwarzian derivative , 1989 .

[25]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[26]  D. Levi,et al.  Continuous symmetries of difference equations , 2005, nlin/0502004.

[27]  P. Winternitz,et al.  Discretization of partial differential equations preserving their physical symmetries , 2005, math-ph/0507061.

[28]  P. Olver,et al.  Moving Coframes: I. A Practical Algorithm , 1998 .

[29]  Roberto Floreanini,et al.  Lie symmetries of finite‐difference equations , 1995 .

[30]  D. Levi,et al.  Lie symmetries of multidimensional difference equations , 2001, 0709.3238.

[31]  D. Levi,et al.  Lie point symmetries of difference equations and lattices , 2000, 0709.3112.

[32]  Reinout Quispel,et al.  Geometric Numerical Integration of Differential Equations , 2006 .

[33]  Chris Budd,et al.  Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation , 2001 .

[34]  P. J. Olver,et al.  Foundations of Computational Mathematics: Moving frames — in geometry, algebra, computer vision, and numerical analysis , 2001 .

[35]  S. Lie,et al.  Classification und Integration von gewhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten: Die nachstehende Arbeit erschien zum ersten Male im Frhling 1883 im norwegischen Archiv , 1888 .

[36]  P. Winternitz,et al.  The Korteweg–de Vries equation and its symmetry-preserving discretization , 2014, 1409.4340.

[37]  Vladimir Dorodnitsyn,et al.  Lie Point Symmetry Preserving Discretizations for Variable Coefficient Korteweg–de Vries Equations , 2000 .

[38]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[39]  Difference schemes with point symmetries and their numerical tests , 2006, math-ph/0602057.

[40]  V. Dorodnitsyn Transformation groups in net spaces , 1991 .