Interaction of kinesin motors, microtubules, and MAPs

[1]  S. Auerbach,et al.  Alternating Site ATPase Pathway of Rat Conventional Kinesin* , 2005, Journal of Biological Chemistry.

[2]  Nobutaka Hirokawa,et al.  Analysis of the kinesin superfamily: insights into structure and function. , 2005, Trends in cell biology.

[3]  M. Schliwa,et al.  The complex interplay between the neck and hinge domains in kinesin-1 dimerization and motor activity. , 2005, Molecular biology of the cell.

[4]  Paul R Selvin,et al.  Kinesin: walking, crawling or sliding along? , 2005, Trends in cell biology.

[5]  N. Hirokawa,et al.  Kinesin superfamily proteins and their various functions and dynamics. , 2004, Experimental cell research.

[6]  Russell L. Malmberg,et al.  A standardized kinesin nomenclature , 2004, The Journal of cell biology.

[7]  E. Mandelkow,et al.  MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons , 2004, The Journal of cell biology.

[8]  P. Tittmann,et al.  Surface-decoration of microtubules by human tau. , 2004, Journal of molecular biology.

[9]  W. Saxton,et al.  Microtubule-kinesin interface mutants reveal a site critical for communication. , 2004, Biochemistry.

[10]  S. Endow,et al.  A new kinesin tree , 2004, Journal of Cell Science.

[11]  M. Plamann,et al.  Cytoskeleton and motor proteins in filamentous fungi. , 2003, Current opinion in microbiology.

[12]  Justin E. Molloy,et al.  Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers , 2003, Nature Cell Biology.

[13]  Hee-Won Park,et al.  Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd , 2003, The EMBO journal.

[14]  Hernando Sosa,et al.  Configuration of the two kinesin motor domains during ATP hydrolysis , 2003, Nature Structural Biology.

[15]  E. Mandelkow,et al.  Nucleotide‐induced conformations in the neck region of dimeric kinesin , 2003, The EMBO journal.

[16]  R. Vale The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[17]  A. Hoenger,et al.  Motor domain mutation traps kinesin as a microtubule rigor complex. , 2003, Biochemistry.

[18]  M. Goedert,et al.  Repeat motifs of tau bind to the insides of microtubules in the absence of taxol , 2003, The EMBO journal.

[19]  S. Ems-McClung,et al.  Kin I Kinesins: Insights into the Mechanism of Depolymerization , 2003, Critical reviews in biochemistry and molecular biology.

[20]  E. Mandelkow,et al.  Kinesin motors and disease. , 2002, Trends in cell biology.

[21]  N. Volkmann,et al.  Microscopic evidence for a minus‐end‐directed power stroke in the kinesin motor ncd , 2002, The EMBO journal.

[22]  Roger Cooke,et al.  Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy , 2002, Nature Structural Biology.

[23]  E. Mandelkow,et al.  Single‐molecule investigation of the interference between kinesin, tau and MAP2c , 2002, The EMBO journal.

[24]  Daisuke Maruyama,et al.  A High-Speed Atomic Force Microscope for Studying Biological Macromolecules in Action , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  S. Halpain,et al.  MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments , 2002, The Journal of cell biology.

[26]  R. Milligan,et al.  A mechanism for microtubule depolymerization by KinI kinesins. , 2002, Molecular cell.

[27]  E. Mandelkow,et al.  Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules , 2001, The EMBO journal.

[28]  E. Nogales,et al.  Refined structure of alpha beta-tubulin at 3.5 A resolution. , 2001, Journal of molecular biology.

[29]  T. Ando,et al.  A high-speed atomic force microscope for studying biological macromolecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  E. Mandelkow,et al.  Dynamics and cooperativity of microtubule decoration by the motor protein kinesin. , 2001, Journal of molecular biology.

[31]  Masahide Kikkawa,et al.  Switch-based mechanism of kinesin motors , 2001, Nature.

[32]  L. Amos,et al.  Antibodies to cytoplasmic dynein heavy chain map the surface and inhibit motility. , 2001, Journal of molecular biology.

[33]  Dietmar J. Manstein,et al.  Single-molecule tracking of myosins with genetically engineered amplifier domains , 2001, Nature Structural Biology.

[34]  D. Svergun,et al.  The Overall Conformation of Conventional Kinesins Studied by Small Angle X-ray and Neutron Scattering* , 2001, The Journal of Biological Chemistry.

[35]  E. Mandelkow,et al.  A new look at the microtubule binding patterns of dimeric kinesins. , 2000, Journal of molecular biology.

[36]  Masahide Kikkawa,et al.  15 Å Resolution Model of the Monomeric Kinesin Motor, KIF1A , 2000, Cell.

[37]  Roger Cooke,et al.  A structural change in the kinesin motor protein that drives motility , 1999, Nature.

[38]  F. Kozielski,et al.  The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. , 1999, Structure.

[39]  K. Hirose,et al.  Congruent docking of dimeric kinesin and ncd into three-dimensional electron cryomicroscopy maps of microtubule-motor ADP complexes. , 1999, Molecular biology of the cell.

[40]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[41]  Ronald D. Vale,et al.  Direction determination in the minus-end-directed kinesin motor ncd , 1998, Nature.

[42]  L. Serrano,et al.  Obligatory steps in protein folding and the conformational diversity of the transition state , 1998, Nature Structural &Molecular Biology.

[43]  E. Mandelkow,et al.  Image Reconstructions of Microtubules Decorated with Monomeric and Dimeric Kinesins: Comparison with X-Ray Structure and Implications for Motility , 1998, The Journal of cell biology.

[44]  R. Wade,et al.  A model of the microtubule–kinesin complex based on electron cryomicroscopy and X-ray crystallography , 1998, Current Biology.

[45]  E. Mandelkow,et al.  Interaction of monomeric and dimeric kinesin with microtubules. , 1998, Journal of molecular biology.

[46]  R. Wade,et al.  Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules. , 1998, Structure.

[47]  Kenneth H. Downing,et al.  Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[48]  E. Mandelkow,et al.  The Crystal Structure of Dimeric Kinesin and Implications for Microtubule-Dependent Motility , 1997, Cell.

[49]  E. Mandelkow,et al.  X-ray structure of motor and neck domains from rat brain kinesin. , 1997, Biochemistry.

[50]  Andreas Hoenger,et al.  A Model for the Microtubule-Ncd Motor Protein Complex Obtained by Cryo-Electron Microscopy and Image Analysis , 1997, Cell.

[51]  L. Goldstein,et al.  Probing the Kinesin-Microtubule Interaction* , 1997, The Journal of Biological Chemistry.

[52]  R. Wade,et al.  Three-dimensional structure of functional motor proteins on microtubules , 1996, Current Biology.

[53]  K. Hirose,et al.  Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[54]  L. Amos,et al.  Microtubule minus ends can be labelled with a phage display antibody specific to alpha-tubulin. , 1996, Journal of molecular biology.

[55]  Ronald D. Vale,et al.  Crystal structure of the kinesin motor domain reveals a structural similarity to myosin , 1996, Nature.

[56]  G. Steinberg,et al.  Characterization of the Biophysical and Motility Properties of Kinesin from the Fungus Neurospora crassa(*) , 1996, The Journal of Biological Chemistry.

[57]  R. Walker,et al.  ncd and kinesin motor domains interact with both alpha- and beta-tubulin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[58]  E. Mandelkow,et al.  The anatomy of flagellar microtubules: polarity, seam, junctions, and lattice , 1995, The Journal of cell biology.

[59]  N. Hirokawa,et al.  Direct visualization of the microtubule lattice seam both in vitro and in vivo , 1994, The Journal of cell biology.

[60]  E. Mandelkow,et al.  Recombinant kinesin motor domain binds to beta-tubulin and decorates microtubules with a B surface lattice. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[61]  H. Ponstingl,et al.  Common and distinct tubulin binding sites for microtubule-associated proteins. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[62]  E. Mandelkow,et al.  On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness , 1986, The Journal of cell biology.

[63]  E. Mandelkow,et al.  Tubulin domains responsible for assembly of dimers and protofilaments. , 1985, The EMBO journal.

[64]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[65]  R. Maccioni,et al.  Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. , 1984, Biochemistry.

[66]  Massimo Antognozzi,et al.  Mechanical properties of single myosin molecules probed with the photonic force microscope. , 2005, Biophysical journal.

[67]  E. Mandelkow,et al.  The structure of microtubule motor proteins. , 2005, Advances in protein chemistry.

[68]  Toshio Ando,et al.  High-resolution imaging of myosin motor in action by a high-speed atomic force microscope. , 2003, Advances in experimental medicine and biology.

[69]  E. Mandelkow,et al.  The coiled-coil helix in the neck of kinesin. , 1998, Journal of structural biology.

[70]  E. Nogales,et al.  Structure of the alpha beta tubulin dimer by electron crystallography. , 1998, Nature.

[71]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[72]  Scott T. Brady,et al.  A novel brain ATPase with properties expected for the fast axonal transport motor , 1985, Nature.