Hörmander’s theorem for semilinear SPDEs
暂无分享,去创建一个
[1] C. S. G. David. Stochastic Analysis , 2021, Nature.
[2] Jonathan C. Mattingly,et al. The strong Feller property for singular stochastic PDEs , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[3] Paul Gassiat,et al. Malliavin Calculus for regularity structures: the case of gPAM , 2015, 1511.08888.
[4] Terry Lyons,et al. The theory of rough paths via one-forms and the extension of an argument of Schwartz to rough differential equations , 2015, 1503.06175.
[5] M. Gubinelli,et al. Unbounded rough drivers , 2015, 1501.02074.
[6] W. Stannat,et al. Stochastic partial differential equations: a rough path view , 2014, 1412.6557.
[7] Martin Hairer. Introduction to regularity structures , 2014, Universitext.
[8] Martin Hairer,et al. Geometric versus non-geometric rough paths , 2012, 1210.6294.
[9] Nicolas Perkowski,et al. PARACONTROLLED DISTRIBUTIONS AND SINGULAR PDES , 2012, Forum of Mathematics, Pi.
[10] Martin Hairer,et al. Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths , 2011, 1104.5218.
[11] S. Riedel,et al. Integrability of (Non-)Linear Rough Differential Equations and Integrals , 2011, 1104.0577.
[12] Martin Hairer,et al. On Malliavinʼs proof of Hörmanderʼs theorem , 2011, 1103.1998.
[13] S. Tindel,et al. Malliavin calculus for fractional heat equation , 2009, 1109.0422.
[14] M. Gubinelli,et al. Non-linear rough heat equations , 2009, 0911.0618.
[15] N. Pillai,et al. Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion , 2009, 0909.4505.
[16] Martin Hairer,et al. An Introduction to Stochastic PDEs , 2009, 0907.4178.
[17] Martin Hairer,et al. A Theory of Hypoellipticity and Unique Ergodicity for Semilinear Stochastic PDEs , 2008, 0808.1361.
[18] Massimiliano Gubinelli,et al. Rough evolution equations , 2008, 0803.0552.
[19] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[20] Jonathan C. Mattingly,et al. Malliavin calculus for infinite-dimensional systems with additive noise , 2006, math/0610754.
[21] Fabrice Baudoin,et al. Hypoellipticity in infinite dimensions and an application in interest rate theory , 2005, math/0508452.
[22] Jonathan C. Mattingly,et al. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing , 2004, math/0406087.
[23] M. Gubinelli. Controlling rough paths , 2003, math/0306433.
[24] Terry Lyons,et al. System Control and Rough Paths , 2003 .
[25] J. Eckmann,et al. Uniqueness of the Invariant Measure¶for a Stochastic PDE Driven by Degenerate Noise , 2000, nlin/0009028.
[26] Sandra Cfrrai. Ergodicity for stochastic reaction-diffusion systems with polynomial coefficients , 1999 .
[27] Terry Lyons. Di erential equations driven by rough signals , 1998 .
[28] K. Elworthy. ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .
[29] Franco Flandoli,et al. Ergodicity of the 2-D Navier-Stokes equation under random perturbations , 1995 .
[30] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[31] R. Temam,et al. Inertial Forms of Navier-Stokes Equations on the Sphere , 1993, chao-dyn/9304004.
[32] D. Stroock,et al. Applications of the Malliavin calculus. II , 1985 .
[33] J. Bismut. Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions , 1981 .
[34] L. C. Young,et al. An inequality of the Hölder type, connected with Stieltjes integration , 1936 .
[35] Martin Hairer,et al. A Course on Rough Paths , 2020, Universitext.
[36] David Nualart Rodón,et al. The Malliavin Calculus and Related Topics , 2006 .
[37] J. Zabczyk,et al. Strong feller property for stochastic semilinear equations , 1995 .
[38] J. Norris. Simplified Malliavin calculus , 1986 .
[39] P. Malliavin. Stochastic calculus of variation and hypoelliptic operators , 1978 .
[40] Kuo-Tsai Chen,et al. Iterated Integrals and Exponential Homomorphisms , 1954 .