Unbiased approximation in multicriteria optimization
暂无分享,去创建一个
[1] Kathrin Klamroth,et al. Norm-Based Approximation in Bicriteria Programming , 2001, Comput. Optim. Appl..
[2] Ignacy Kaliszewski,et al. Quantitative Pareto Analysis by Cone Separation Technique , 1994 .
[3] Margaret M. Wiecek,et al. Retrieval and use of the balance set in multiobjective global optimization , 1999 .
[4] Bernard Lemaire,et al. Approximation in multiobjective optimization , 1992, J. Glob. Optim..
[5] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[6] V N Nefedov,et al. On the approximation of a Pareto set , 1985 .
[7] Michael M. Kostreva,et al. A method for approximating solutions Of multicriterial nonlinear Optimization problems , 1995 .
[8] P. Gruber. Approximation of convex bodies , 1983 .
[9] I. M. Sobol,et al. Error Estimates for the Crude Approximation of the Trade-off Curve , 1997 .
[10] H. P. Benson,et al. Towards finding global representations of the efficient set in multiple objective mathematical programming , 1997 .
[11] A. M. Geoffrion. Proper efficiency and the theory of vector maximization , 1968 .
[12] Bernd Schandl. Norm-Based Evaluation and Approximation in Multicriteria Programming , 1999 .
[13] E. L. Ulungu,et al. MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .
[14] Xavier Gandibleux,et al. A Tabu Search Procedure to Solve MultiObjective Combinatorial Optimization Problems , 1997 .
[15] Ignacy Kaliszewski,et al. A modified weighted tchebycheff metric for multiple objective programming , 1987, Comput. Oper. Res..
[16] E. Balas. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .
[17] Siegfried Helbig,et al. Approximation of the efficient point set by perturbation of the ordering cone , 1991, ZOR Methods Model. Oper. Res..
[18] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[19] Kathrin Klamroth,et al. Norm-based approximation in multicriteria programming , 2002 .
[20] R. B. Statnikov,et al. Use of Pτ-nets for the approximation of the Edgeworth-Pareto set in multicriteria optimization , 1996 .
[21] Ralph E. Steuer,et al. An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..
[22] Kathrin Klamroth,et al. Introducing oblique norms into multiple criteria programming , 2002, J. Glob. Optim..
[23] Günter Rote,et al. The convergence rate of the sandwich algorithm for approximating convex functions , 1992, Computing.
[24] Piotr Czyzżak,et al. Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .
[25] Gottfried Martin,et al. Gesammelte Abhandlungen Band I. , 1964 .