Unbiased approximation in multicriteria optimization

Abstract. Algorithms generating piecewise linear approximations of the nondominated set for general, convex and nonconvex, multicriteria programs are developed. Polyhedral distance functions are used to construct the approximation and evaluate its quality. The functions automatically adapt to the problem structure and scaling which makes the approximation process unbiased and self-driven. Decision makers preferences, if available, can be easily incorporated but are not required by the procedure.

[1]  Kathrin Klamroth,et al.  Norm-Based Approximation in Bicriteria Programming , 2001, Comput. Optim. Appl..

[2]  Ignacy Kaliszewski,et al.  Quantitative Pareto Analysis by Cone Separation Technique , 1994 .

[3]  Margaret M. Wiecek,et al.  Retrieval and use of the balance set in multiobjective global optimization , 1999 .

[4]  Bernard Lemaire,et al.  Approximation in multiobjective optimization , 1992, J. Glob. Optim..

[5]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[6]  V N Nefedov,et al.  On the approximation of a Pareto set , 1985 .

[7]  Michael M. Kostreva,et al.  A method for approximating solutions Of multicriterial nonlinear Optimization problems , 1995 .

[8]  P. Gruber Approximation of convex bodies , 1983 .

[9]  I. M. Sobol,et al.  Error Estimates for the Crude Approximation of the Trade-off Curve , 1997 .

[10]  H. P. Benson,et al.  Towards finding global representations of the efficient set in multiple objective mathematical programming , 1997 .

[11]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[12]  Bernd Schandl Norm-Based Evaluation and Approximation in Multicriteria Programming , 1999 .

[13]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[14]  Xavier Gandibleux,et al.  A Tabu Search Procedure to Solve MultiObjective Combinatorial Optimization Problems , 1997 .

[15]  Ignacy Kaliszewski,et al.  A modified weighted tchebycheff metric for multiple objective programming , 1987, Comput. Oper. Res..

[16]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[17]  Siegfried Helbig,et al.  Approximation of the efficient point set by perturbation of the ordering cone , 1991, ZOR Methods Model. Oper. Res..

[18]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[19]  Kathrin Klamroth,et al.  Norm-based approximation in multicriteria programming , 2002 .

[20]  R. B. Statnikov,et al.  Use of Pτ-nets for the approximation of the Edgeworth-Pareto set in multicriteria optimization , 1996 .

[21]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[22]  Kathrin Klamroth,et al.  Introducing oblique norms into multiple criteria programming , 2002, J. Glob. Optim..

[23]  Günter Rote,et al.  The convergence rate of the sandwich algorithm for approximating convex functions , 1992, Computing.

[24]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[25]  Gottfried Martin,et al.  Gesammelte Abhandlungen Band I. , 1964 .