Analog Computing with Metatronic Circuits

Analog photonic solutions offer unique opportunities to address complex computational tasks with unprecedented performance in terms of energy dissipation and speeds, overcoming current limitations of modern computing architectures based on electron flows and digital approaches. The lack of modularization and lumped element reconfigurability in photonics has prevented the transition to an all-optical analog computing platform. Here, we explore a nanophotonic platform based on epsilon-near-zero materials capable of solving in the analog domain partial differential equations (PDE). Wavelength stretching in zero-index media enables highly nonlocal interactions within the board based on the conduction of electric displacement, which can be monitored to extract the solution of a broad class of PDE problems. By exploiting control of deposition technique through process parameters, we demonstrate the possibility of implementing the proposed nano-optic processor using CMOS-compatible indium-tin-oxide, whose optical properties can be tuned by carrier injection to obtain programmability at high speeds and low energy requirements. Our nano-optical analog processor can be integrated at chip-scale, processing arbitrary inputs at the speed of light.

[1]  Tarek El-Ghazawi,et al.  Hybrid Photonic-Plasmonic Nonblocking Broadband 5 × 5 Router for Optical Networks , 2017, IEEE Photonics Journal.

[2]  Giacomo Aletti,et al.  A New Nonlocal Nonlinear Diffusion Equation for Data Analysis , 2017, Acta Applicandae Mathematicae.

[3]  Bert Hecht,et al.  Electrically-driven Yagi-Uda antennas for light , 2020, Nature Communications.

[4]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Mario Miscuglio,et al.  Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics , 2020 .

[6]  Mario Miscuglio,et al.  Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide , 2018, Scientific Reports.

[7]  G. Navickaite,et al.  Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns , 2014, Science.

[8]  H. John,et al.  Why future supercomputing requires optics , 2010 .

[9]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[10]  Andrea Alù,et al.  Individual nanoantennas loaded with three-dimensional optical nanocircuits. , 2013, Nano letters.

[11]  Andrea Alù,et al.  All optical metamaterial circuit board at the nanoscale. , 2009, Physical review letters.

[12]  Volker J. Sorger,et al.  Silicon Plasmon Modulators: Breaking Photonic Limits , 2013 .

[13]  Sefaattin Tongay,et al.  Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide , 2015, Nature Communications.

[14]  Volker J. Sorger,et al.  0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics , 2018, APL Photonics.

[15]  Nader Engheta,et al.  Nanoinsulators and nanoconnectors for optical nanocircuits , 2007, cond-mat/0703600.

[16]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[17]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[18]  Ulf Peschel,et al.  Nanoscale conducting oxide PlasMOStor. , 2014, Nano letters.

[19]  G Liebmann,et al.  Solution of Partial Differential Equations with a Resistance Network Analogue , 1950 .

[20]  Tarek El-Ghazawi,et al.  ITO-based electro-absorption modulator for photonic neural activation function , 2019, APL Materials.

[21]  Ellen Zhou,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2017, Scientific Reports.

[22]  Seokho Yun,et al.  Low-loss impedance-matched optical metamaterials with zero-phase delay. , 2012, ACS nano.

[23]  Ting Mei,et al.  Extended Drude Model for Intraband-Transition-Induced Optical Nonlinearity , 2019, Physical Review Applied.

[24]  Yannis P. Tsividis,et al.  An Event-driven Clockless Level-Crossing ADC With Signal-Dependent Adaptive Resolution , 2013, IEEE Journal of Solid-State Circuits.

[25]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[26]  Brian A. Slovick,et al.  Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector , 2014 .

[27]  Bing Chen,et al.  A general memristor-based partial differential equation solver , 2018, Nature Electronics.

[28]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[29]  J. David Irwin,et al.  Basic Engineering Circuit Analysis , 1984 .

[30]  Yue Jiang,et al.  All-optical neural network with nonlinear activation functions , 2019, Optica.

[31]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[32]  Peng Lin,et al.  Reinforcement learning with analogue memristor arrays , 2019, Nature Electronics.

[33]  Andrea Alù,et al.  Modular assembly of optical nanocircuits , 2014, Nature Communications.

[34]  Nader Engheta,et al.  Waveguide metatronics: Lumped circuitry based on structural dispersion , 2016, Science Advances.

[35]  Erwen Li,et al.  Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability , 2019, Photonics Research.

[36]  G Liebmann Resistance-network analogues with unequal meshes or subdivided meshes , 1954 .

[37]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[38]  Nader Engheta,et al.  Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry. , 2012, Physical review letters.

[39]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[40]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[42]  N. Engheta,et al.  Inverse-designed metastructures that solve equations , 2019, Science.

[43]  N. Engheta,et al.  Capacitor-Inspired Metamaterial Inductors , 2018, Physical Review Applied.

[44]  Gordon Wetzstein,et al.  Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification , 2018, Scientific Reports.

[45]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[46]  James S. Harris,et al.  Epsilon-Near-Zero Si Slot-Waveguide Modulator , 2018, ACS Photonics.

[47]  Pritish Narayanan,et al.  Equivalent-accuracy accelerated neural-network training using analogue memory , 2018, Nature.

[48]  Mario Miscuglio,et al.  All-optical nonlinear activation function for photonic neural networks [Invited] , 2018, Optical Materials Express.

[49]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[50]  J. Burns,et al.  A PDE Sensitivity Equation Method for Optimal Aerodynamic Design , 1997 .