A tractable model for indices approximating the growth optimal portfolio

Abstract The growth optimal portfolio (GOP) plays an important role in finance, where it serves as the numéraire portfolio, with respect to which contingent claims can be priced under the real world probability measure. This paper models the GOP using a time dependent constant elasticity of variance (TCEV) model. The TCEV model has high tractability for a range of derivative prices and fits well the dynamics of a global diversified world equity index. This is confirmed when pricing and hedging various derivatives using this index.

[1]  W. Runggaldier,et al.  Diffusion-Based Models for Financial Markets Without Martingale Measures , 2012, 1209.4449.

[2]  Estimating the Diffusion Coefficient Function for a Diversified World Stock Index , 2011 .

[3]  E. Thorp,et al.  The Kelly Capital Growth Investment Criterion: Theory and Practice , 2011 .

[4]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[5]  E. Platen,et al.  Approximating the numéraire portfolio by naive diversification , 2010 .

[6]  M. Schweizer,et al.  M-6-On Minimal Market Models and Minimal Martingale Measures , 2010 .

[7]  Constantinos Kardaras,et al.  Finitely Additive Probabilities and the Fundamental Theorem of Asset Pricing , 2009, 0911.5503.

[8]  C. Chiarella,et al.  Contemporary quantitative finance : essays in honour of Eckhard Platen , 2010 .

[9]  H. Hulley Strict Local Martingales in Continuous Financial Market Models , 2009 .

[10]  E. Platen,et al.  Hedging for the long run , 2012 .

[11]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[12]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[13]  Vadim Linetsky,et al.  A jump to default extended CEV model: an application of Bessel processes , 2006, Finance Stochastics.

[14]  Eckhard Platen,et al.  On the Role of the Growth Optimal Portfolio in Finance , 2005 .

[15]  S. Sheather Density Estimation , 2004 .

[16]  E. Platen Arbitrage in continuous complete markets , 2002, Advances in Applied Probability.

[17]  David Heath,et al.  Consistent pricing and hedging for a modified constant elasticity of variance model , 2002 .

[18]  Dirk Becherer The numeraire portfolio for unbounded semimartingales , 2001, Finance Stochastics.

[19]  A minimal financial market model , 2001 .

[20]  Darrell Duffie,et al.  Risk and Valuation of Collateralized Debt Obligations , 2001 .

[21]  Gregory A. Willard,et al.  Local martingales, arbitrage, and viability Free snacks and cheap thrills , 2000 .

[22]  Non‐parametric Kernel Estimation of the Coefficient of a Diffusion , 2000 .

[23]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[24]  Eckhard Platen A short term interest rate model , 1999, Finance Stochastics.

[25]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[26]  Richard Stanton A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk , 1997 .

[27]  S. Heston,et al.  A Simple New Formula for Options With Stochastic Volatility , 1997 .

[28]  G. J. Jiang,et al.  A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model , 1997, Econometric Theory.

[29]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[30]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[31]  S. Schaefer,et al.  Interest rate volatility and the shape of the term structure , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[32]  S. Schaefer,et al.  The term structure of real interest rates and the Cox, Ingersoll, and Ross model , 1994 .

[33]  G. Trenkler Continuous univariate distributions , 1994 .

[34]  Bruno Dupire Pricing with a Smile , 1994 .

[35]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[36]  John B. Long The numeraire portfolio , 1990 .

[37]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[38]  Mark Schroder Computing the Constant Elasticity of Variance Option Pricing Formula , 1989 .

[39]  J. Pitman,et al.  A decomposition of Bessel Bridges , 1982 .

[40]  P. Samuelson Why we should not make mean log of wealth big though years to act are long , 1979 .

[41]  H. Markowitz Investment for the Long Run: New Evidence for an Old Rule , 1976 .

[42]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[43]  E Thorp,et al.  A FAVORABLE STRATEGY FOR TWENTY-ONE. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. Breiman INVESTMENT POLICIES FOR EXPANDING BUSINESSES OPTIMAL IN A LONG-RUN SENSE , 1960 .

[45]  H. Latané Criteria for Choice Among Risky Ventures , 1959, Journal of Political Economy.

[46]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.