One-dimensional I test and direction vector I test with array references by induction variable

In this paper, theoretical aspects to demonstrate the accuracy of the Interval Test (the I test and the direction vector I test) to be applied for resolving the problem stated above is presented. Also, it is proved from the proposed theoretical aspects that under a specific direction vector there are integer-valued solutions for one-dimensional arrays with subscripts formed by induction variable and under other specific direction vectors there are no integer-valued solutions. Experiments with benchmarks, cited from Parallel loop, Vector loop and TRFD (Perfect benchmark), reveal that our framework can properly enhance the precision of data dependence analysis for one-dimensional arrays with subscripts mentioned above.

[1]  KLEANTHIS PSARRIS,et al.  On the Accuracy of the Banerjee Test , 1991, J. Parallel Distributed Comput..

[2]  Rudolf Eigenmann,et al.  Nonlinear and Symbolic Data Dependence Testing , 1998, IEEE Trans. Parallel Distributed Syst..

[3]  Chih-Ping Chu,et al.  The I+ Test , 1998, LCPC.

[4]  Chih-Ping Chu,et al.  The generalized Direction Vector I test , 2001, Parallel Comput..

[5]  Utpal Banerjee,et al.  Dependence analysis for supercomputing , 1988, The Kluwer international series in engineering and computer science.

[6]  Zhiyuan Li,et al.  An Efficient Data Dependence Analysis for Parallelizing Compilers , 1990, IEEE Trans. Parallel Distributed Syst..

[7]  Chau-Wen Tseng,et al.  The Power Test for Data Dependence , 1992, IEEE Trans. Parallel Distributed Syst..

[8]  Utpal Banerjee,et al.  Loop Transformations for Restructuring Compilers: The Foundations , 1993, Springer US.

[9]  Jay Hoeflinger,et al.  Interprocedural parallelization using memory classification analysis , 1998 .

[10]  Chih-Ping Chu,et al.  A precise dependence analysis for multi-dimensional arrays under specific dependence direction , 2002, J. Syst. Softw..

[11]  Jack J. Dongarra,et al.  A comparative study of automatic vectorizing compilers , 1991, Parallel Comput..

[12]  Paul Marx Petersen Evaluation of programs and parallelizing compilers using dynamic analysis techniques , 1993 .

[13]  Konstantinos Kyriakopoulos,et al.  Data dependence testing in practice , 1999, 1999 International Conference on Parallel Architectures and Compilation Techniques (Cat. No.PR00425).

[14]  David Niedzielski,et al.  An Analytical Comparison of the I-Test and Omega Test , 1999, LCPC.

[15]  Tsung-Chuan Huang,et al.  Data dependence analysis for array references , 2000, J. Syst. Softw..

[16]  Yunheung Paek,et al.  Compiling for Distributed Memory Multiprocessors Based on Access Region Analysis , 1997 .

[17]  Weng-Long Chang,et al.  The extension of the I test , 1998, Parallel Comput..

[18]  Jack J. Dongarra,et al.  Parallel loops - a test suite for parallelizing compilers: description and example results , 1991, Parallel Comput..

[19]  Kleanthis Psarris,et al.  The I Test: An Improved Dependence Test for Automatic Parallelization and Vectorization , 1991, IEEE Trans. Parallel Distributed Syst..

[20]  Chih-Ping Chu,et al.  The infinity Lambda test: A multi-dimensional version of Banerjee infinity test , 2000, Parallel Comput..

[21]  David A. Padua,et al.  Analyses of pointers, induction variables, and container objects for dependence testing , 2001 .

[22]  Zhiyu Shen,et al.  An Empirical Study of Fortran Programs for Parallelizing Compilers , 1990, IEEE Trans. Parallel Distributed Syst..

[23]  William Pugh,et al.  A practical algorithm for exact array dependence analysis , 1992, CACM.

[24]  David A. Padua,et al.  On the Automatic Parallelization of the Perfect Benchmarks , 1998, IEEE Trans. Parallel Distributed Syst..

[25]  Chih-Ping Chu,et al.  A multi-dimensional version of the I test , 2001, Parallel Comput..

[26]  Xiangyun Kong,et al.  The Direction Vector I Test , 1993, IEEE Trans. Parallel Distributed Syst..